P1605 迷宫
题目背景
给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过。给定起点坐标和终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案。在迷宫中移动有上下左右四种方式,每次只能移动一个方格。数据保证起点上没有障碍。
题目描述
无
输入格式
第一行N、M和T,N为行,M为列,T为障碍总数。第二行起点坐标SX,SY,终点坐标FX,FY。接下来T行,每行为障碍点的坐标。
输出格式
给定起点坐标和终点坐标,问每个方格最多经过1次,从起点坐标到终点坐标的方案总数。
输入输出样例
输入 #1 复制
2 2 1
1 1 2 2
1 2
输出 #1 复制
1
说明/提示
【数据规模】
1≤N,M≤5
解题思路:
这是一道很标准的深搜问题。
标程:
#include<iostream>
#include<bits/stdc++.h>
using namespace std;
int mm[6][6];
bool temp[6][6];
int dx[4]={0,0,1,-1};
int dy[4]={-1,1,0,0};
int total , n , m , t , fx,fy,sx,sy;
void search(int x , int y)
{
if(x==fx&&y==fy)
{
total++;
return;
}
else
{
for(int i = 0 ; i <= 3 ; i++)
{
if(temp[x+dx[i]][y+dy[i]]==0&&mm[x+dx[i]][y+dy[i]]==1)
{
temp[x][y]=1;
search(x+dx[i],y+dy[i]);
temp[x][y] = 0;
}
}
}
}
int main()
{
cin >> n >> m >> t;
int l , r;
for(int ix = 1 ; ix <= n ; ix++)
{
for(int iy = 1 ; iy <= n ; iy++)
{
mm[ix][iy]=1;
}
}
cin >> sx >> sy;
cin >> fx >> fy;
for(int u = 1 ; u <= t ; u++)
{
cin >> l >> r;
mm[l][r] = 0;
}
search(sx,sy);
cout << total << endl;
return 0;
}
另外再补充一点,对于深搜的模板,使用深搜一个个查,使用一个数组map记录障碍的地方,再使用一个temp来标记自己所走过的路;
int dx[4]={0,0,1,-1};
int dy[4]={-1,1,0,0};
使用自动选择方向来代替4个if判断,有的时候是八个方向,也可以存在二维数组里依次判断八个方向,
int search(int t)
{
if(满足输出条件)
{
输出解;
}
else
{
for(int i=1;i<=尝试方法数;i++)
if(满足进一步搜索条件)
{
为进一步搜索所需要的状态打上标记;
search(t+1);
恢复到打标记前的状态;//也就是说的{回溯一步}
}
}
}
这就是常见的深搜模板,
1.第一个if是符合输出解的条件,第二个if是符合进一步搜索的条件;
2.下一步搜索时,不是使用return search(t+1),直接search(t+1);(新手可能会注意不到这个关键的地方,以至于每次写完不知道为什么只得到一个答案就返回主程序了)
3.for循环之后的if可以是多个;
4.for循环边界,
例如:
1>方向是四个,那么边界肯定就是4;
2>素数环需要尝试1至20,那么边界就是20;