迷宫题解

P1605 迷宫
题目背景
给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过。给定起点坐标和终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案。在迷宫中移动有上下左右四种方式,每次只能移动一个方格。数据保证起点上没有障碍。

题目描述

输入格式
第一行N、M和T,N为行,M为列,T为障碍总数。第二行起点坐标SX,SY,终点坐标FX,FY。接下来T行,每行为障碍点的坐标。

输出格式
给定起点坐标和终点坐标,问每个方格最多经过1次,从起点坐标到终点坐标的方案总数。

输入输出样例
输入 #1 复制
2 2 1
1 1 2 2
1 2
输出 #1 复制
1
说明/提示
【数据规模】

1≤N,M≤5

解题思路:
这是一道很标准的深搜问题。

标程:

#include<iostream> 
#include<bits/stdc++.h>
using namespace std;
int mm[6][6];
bool temp[6][6];
int dx[4]={0,0,1,-1};
int dy[4]={-1,1,0,0};
int total , n , m , t , fx,fy,sx,sy;
void search(int x , int y)
{
	if(x==fx&&y==fy)
	{
		total++;
		return;
	}
	else
	{
		for(int i = 0 ; i <= 3 ; i++)
		{
			if(temp[x+dx[i]][y+dy[i]]==0&&mm[x+dx[i]][y+dy[i]]==1)
			{
				temp[x][y]=1;
				search(x+dx[i],y+dy[i]);
				temp[x][y] = 0;
			}
		}
	}
}
int main()
{
	cin >> n >> m >> t;
	int l , r;
	for(int ix = 1 ; ix <= n ; ix++)
	{
		for(int iy = 1 ; iy <= n ; iy++)
		{
			mm[ix][iy]=1;
		}
	}
	cin >> sx >> sy;
	cin >> fx >> fy;
	for(int u = 1 ; u <= t ; u++)
	{
		cin >> l >> r;
		mm[l][r] = 0;
	}
	search(sx,sy);
	cout << total << endl;
	return 0;
}

另外再补充一点,对于深搜的模板,使用深搜一个个查,使用一个数组map记录障碍的地方,再使用一个temp来标记自己所走过的路;

int dx[4]={0,0,1,-1};

int dy[4]={-1,1,0,0};

使用自动选择方向来代替4个if判断,有的时候是八个方向,也可以存在二维数组里依次判断八个方向,

int search(int t)
{
    if(满足输出条件)
    {
        输出解;
    }
    else
    {
        for(int i=1;i<=尝试方法数;i++)
            if(满足进一步搜索条件)
            {
                为进一步搜索所需要的状态打上标记;
                search(t+1);
                恢复到打标记前的状态;//也就是说的{回溯一步}
            }
    }
}

这就是常见的深搜模板,
1.第一个if是符合输出解的条件,第二个if是符合进一步搜索的条件;

2.下一步搜索时,不是使用return search(t+1),直接search(t+1);(新手可能会注意不到这个关键的地方,以至于每次写完不知道为什么只得到一个答案就返回主程序了)

3.for循环之后的if可以是多个;

4.for循环边界,
例如:

1>方向是四个,那么边界肯定就是4;
2>素数环需要尝试1至20,那么边界就是20;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值