python高频考点
1、谈一下Python的内存管理机制
答:从三个方面来说,一对象的引用计数机制,二垃圾回收机制,三内存池机制
⒈对象的引用计数机制
Python内部使用引用计数,来保持追踪内存中的对象,所有对象都有引用计数。
引用计数增加的情况:
❶一个对象分配一个新名称
❷将其放入一个容器中(如列表、元组或字典)
引用计数减少的情况:
❶使用del语句对对象别名显示的销毁
❷引用超出作用域或被重新赋值
sys.getrefcount( )函数可以获得对象的当前引用计数
多数情况下,引用计数比你猜测得要大得多。对于不可变数据(如数字和字符串),解释器会在程序的不同部分共享内存,以便节约内存。
⒉垃圾回收
❶当一个对象的引用计数归零时,它将被垃圾收集机制处理掉。
❷当两个对象a和b相互引用时,del语句可以减少a和b的引用计数,并销毁用于引用底层对象的名称。然而由于每个对象都包含一个对其他对象的应用,
因此引用计数不会归零,对象也不会销毁。(从而导致内存泄露)。为解决这一问题,解释器会定期执行一个循环检测器,搜索不可访问对象的循环并删除它们。
⒊内存池机制
Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回给操作系统。
❶Pymalloc机制。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。
❷Python中所有小于256个字节的对象都使用pymalloc实现的分配器,而大的对象则使用系统的malloc。
❸对于Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的整数,用于缓存这些整数的内存就不能再分配给浮点数。
2、深拷贝浅拷贝的区别
3、python解释器
4、list和set的区别
5、python装饰器
6、math和search的区别
>>>print(re.match(‘super’, ‘superstition’).span())
(0, 5)
>>>print(re.match(‘super’, ‘insuperable’))
None
>>>print(re.search(‘super’, ‘superstition’).span())
(0, 5)
>>>print(re.search(‘super’, ‘insuperable’).span())
(2, 7)
7、Python数组和列表有什么区别?
Python中的数组和列表具有相同的存储数据方式。但是,数组只能包含单个数据类型元素,而列表可以包含任何数据类型元素。