1055 Matrix Problem (III) : Array Practice

Description

求两个矩阵A、B的乘积C=AB。根据矩阵乘法的定义,只有A的列数和B的行数相同才能相乘。可以确保所有运算结果都在int类型的范围之内。

Input

输入数据为多个矩阵(最少2个),每个矩阵以两个正整数m和n开始,满足0<m,n<=100,接下来为一个m行n列的矩阵A。当输入的m和n均为0时,表示输入数据结束。

Output

对输入的矩阵两两相乘:第1个和第2个相乘、第1个和第2个相乘的结果和第3个相乘……按顺序输出矩阵相乘的结果:每行两个元素之间用一个空格分开,每行最后一个元素之后为一个换行,在下一行开始输出矩阵的下一行。

若前k个矩阵相乘的结果和第k+1个矩阵无法相乘(即不满足矩阵乘法定义),则输出“Not satisfied the definition of matrix multiplication!”。然后用第k+1个矩阵去和第k+2个矩阵相乘。最后一个矩阵只做乘数。

每两组输出之间用一个空行分隔开。

Sample Input

2 3
1 1 1
1 1 1
3 3
1 2 3
4 5 6
7 8 9
3 1
0
0
0
0 0

Sample Output

12 15 18
12 15 18

0
0

HINT

矩阵的乘法就是一行乘以一列加起来做一个元素。

Append Code

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
int main()
{
    int i,j,m,n,k=0,bm,bn,l;
    int a[105][105]={0},b[105][105]={0},c[105][105]={0};
    while(1)
    {
        scanf("%d%d",&m,&n);
        if(m==0&&n==0)
            break;
        else
        {
            k++;
            if(k==1)//输入的第一个矩阵储存到b中
            {
                bm=m;
                bn=n;//记录b的行列数
                for(i=1;i<=m;i++)
                    for(j=1;j<=n;j++)
                        scanf("%d",&b[i][j]);
            }
            else//将第二个往后的矩阵储存到a中
            {
                for(i=1;i<=m;i++)
                    for(j=1;j<=n;j++)
                        scanf("%d",&a[i][j]);//其行列数就是m*n
            }
            if(k==1)
                continue;//至少输入两个矩阵才有输出
            else
            {
                if(bn==m&&m!=0&&n!=0&&bm!=0)//符合矩阵相乘的要求
                {
                    for(i=1;i<=bm;i++)
                    {
                        for(j=1;j<=n;j++)
                        {
                            c[i][j]=0;
                            for(l=1;l<=m;l++)
                                c[i][j]+=b[i][l]*a[l][j];//将其结果储存到c中;
                        }
                    }
                    for(i=1;i<=bm;i++)
                        for(j=1;j<=n;j++)
                            b[i][j]=c[i][j];//将c复制到b中
                    bm=bm;
                    bn=n;//记录b的行列数
                }
                else//如果不符合
                {
                    printf("Not satisfied the definition of matrix multiplication!\n\n");
                    for(i=1;i<=m;i++)//将a储存到b中
                        for(j=1;j<=n;j++)
                            b[i][j]=a[i][j];
                    bm=m;
                    bn=n;
                    continue;//不再输出其他
                }
            }
            for(i=1;i<=bm;i++)//输出b
            {
                printf("%d",b[i][1]);
                for(j=2;j<=bn;j++)
                {
                    printf(" %d",b[i][j]);
                }
                printf("\n");
            }
            printf("\n");
        }

    }
    return 0;
}

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值