Description
求两个矩阵A、B的乘积C=AB。根据矩阵乘法的定义,只有A的列数和B的行数相同才能相乘。可以确保所有运算结果都在int类型的范围之内。
Input
输入数据为多个矩阵(最少2个),每个矩阵以两个正整数m和n开始,满足0<m,n<=100,接下来为一个m行n列的矩阵A。当输入的m和n均为0时,表示输入数据结束。
Output
对输入的矩阵两两相乘:第1个和第2个相乘、第1个和第2个相乘的结果和第3个相乘……按顺序输出矩阵相乘的结果:每行两个元素之间用一个空格分开,每行最后一个元素之后为一个换行,在下一行开始输出矩阵的下一行。
若前k个矩阵相乘的结果和第k+1个矩阵无法相乘(即不满足矩阵乘法定义),则输出“Not satisfied the definition of matrix multiplication!”。然后用第k+1个矩阵去和第k+2个矩阵相乘。最后一个矩阵只做乘数。
每两组输出之间用一个空行分隔开。
Sample Input
2 3
1 1 1
1 1 1
3 3
1 2 3
4 5 6
7 8 9
3 1
0
0
0
0 0
Sample Output
12 15 18
12 15 18
0
0
HINT
矩阵的乘法就是一行乘以一列加起来做一个元素。
Append Code
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
int main()
{
int i,j,m,n,k=0,bm,bn,l;
int a[105][105]={0},b[105][105]={0},c[105][105]={0};
while(1)
{
scanf("%d%d",&m,&n);
if(m==0&&n==0)
break;
else
{
k++;
if(k==1)//输入的第一个矩阵储存到b中
{
bm=m;
bn=n;//记录b的行列数
for(i=1;i<=m;i++)
for(j=1;j<=n;j++)
scanf("%d",&b[i][j]);
}
else//将第二个往后的矩阵储存到a中
{
for(i=1;i<=m;i++)
for(j=1;j<=n;j++)
scanf("%d",&a[i][j]);//其行列数就是m*n
}
if(k==1)
continue;//至少输入两个矩阵才有输出
else
{
if(bn==m&&m!=0&&n!=0&&bm!=0)//符合矩阵相乘的要求
{
for(i=1;i<=bm;i++)
{
for(j=1;j<=n;j++)
{
c[i][j]=0;
for(l=1;l<=m;l++)
c[i][j]+=b[i][l]*a[l][j];//将其结果储存到c中;
}
}
for(i=1;i<=bm;i++)
for(j=1;j<=n;j++)
b[i][j]=c[i][j];//将c复制到b中
bm=bm;
bn=n;//记录b的行列数
}
else//如果不符合
{
printf("Not satisfied the definition of matrix multiplication!\n\n");
for(i=1;i<=m;i++)//将a储存到b中
for(j=1;j<=n;j++)
b[i][j]=a[i][j];
bm=m;
bn=n;
continue;//不再输出其他
}
}
for(i=1;i<=bm;i++)//输出b
{
printf("%d",b[i][1]);
for(j=2;j<=bn;j++)
{
printf(" %d",b[i][j]);
}
printf("\n");
}
printf("\n");
}
}
return 0;
}