树 (数据结构名词)
树状图是一种数据结构,它是由n(n>=1)个有限结点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
每个结点有零个或多个子结点;没有父结点的结点称为根结点;每一个非根结点有且只有一个父结点;除了根结点外,每个子结点可以分为多个不相交的子树;
-----摘自百度百科

树是N个节点的有限集.n=0时成为空树.在任意一颗非空树中:有且仅有一个特定的成为根的节点;当n>1时,其余节点可分为m个互不相交的有限集T1`T2…TM,其余每一个集合本身又是一棵树,并且成为根的子树,如下图
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
n>0根节点是唯一的,不可能存在多个根节点,
m>0时,子树的个数没有限制,并且是不互相交的

树的节点包含一个数据元素及若干指向其子树的分支.节点拥有的子树数成为节点的度,度为0的节点称为页节点或终端节点;度不为0的节点称为非终端,下节点或分支节点.除节点之外,分支节点也成为内部节点.树的度是树内部各节点的度的最大值.

节点的子树的根称为该节点的孩子,相应的,该节点称为孩子的双亲,同一个双亲的孩子之间称为兄弟,节点的祖先是从根到该节点所经分支上的所有节点,反之,以某节点为根的子树中的任意一节点都称为该节点的子孙
在这里插入图片描述
拿上图来说,1是2和3的父亲,2和3是4,5,6,7的双亲,4,5,6,7之间互为兄弟

结点的层次从根开始定义起,根为第一层,根的孩子为第二层.双亲在同一层的结点互为堂兄弟,树中结点的最大层次称为树的深度或高度
在这里插入图片描述参考于 -------《大话数据结构》
若有差错,还望指正,共勉

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值