数据结构--树--基础知识(书上知识总结罗列)

一、基本定义:

树是n个结点的有限集,它可以是空树或者非空树。对于非空树:有且仅有一个根结点;除根结点外的所有其余结点可以分为m(m>0)个互不相交的有限集,并且每一个集合又是一棵树,称为根的子树

 

二、基本术语:

  1. 结点:树中的一个独立单元。包含一个数据元素及若干指向其子树的分支。 

  2. 结点的度: 结点拥有的子树数称为结点的度。

  3. 叶子:度为0的结点称之为叶子或终端结点。 

  4. 树的度:树的度是树内各结点度的最大值

  5. 双亲和孩子:结点的子树的根称为该结点的孩子。 该结点称为孩子的双亲。 

  6. 兄弟:同一个双亲的孩子之间互称为兄弟。 

  7. 层次:结点的层次从根开始定义起,根为第一层,根的孩子为第二层。树中任一结点的层次等于双亲结点层次加一。 

  8. 树的深度:树中结点的最大层次称之为树的深度或者高度。 

 

 

三、分类:

有序树:树中任意节点的子节点之间有顺序关系

无序树:树中任意节点的子节点之间没有顺序关系

 

推荐博客链接:https://blog.csdn.net/u010275850/article/details/44730373(分类更加详细)

 

四、存储结构:

 

1.双亲表示法

用一组连续的存储单元存储树的结点,每个结点包括数据域和指针域(指向双亲),最常用的表示法。

2.孩子表示法

两种结点:1 数据域+孩子1...+孩子n

                  2 数据域+degree(结点的度)+孩子1...+孩子n

3.孩子兄弟表示法

这个方法又称为二叉树表示法或者二叉链域表示法。

分为:数据域+指针域(指向第一个孩子结点和指向下一个兄弟结点

任意一颗树都能够通过孩子兄弟法转化为二叉树进行存储。

 

五、树的遍历:

 

1.先根遍历树:先访问树的根节点,然后依次先根遍历根的每一棵子树。

2.后根遍历树:先依次后根遍历每棵子树,然后访问根结点。

 

先根遍历结果为:RADEBCFGHK

后根遍历结果为:DEABGHKFCR

 

六、二叉树:

 

重要的性质:1.在二叉树的第i层上至多有2^(i-1)个结点(i>=1)

                      2.深度为k的二叉树至多有2^k-1个结点(k>=1)

                      3对任何一颗二叉树T,如果终端结点数为n0,度为2的结点数为n2,则n0=n2+1.

                       (n=n1+2*n+1)

 

满二叉树:深度为k且含有2^k-1个结点的二叉树。

 

完全二叉树:深度为k的,含有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1到n的结点一一对应时,称为完全二叉树。

 

 

完全二叉树的特点:1叶子结点只可能在层次最大的两层上出现

                                 2.对于任一结点,若其右下分支的子孙的最大层次为l,则其左分支下的子孙的最大层次必为l或l+1

 

完全二叉树的性质:具有n个结点的完全二叉树的深度为【log2n】+1([x]:表示不大于x的最大整数)(书上符号打不出来)

 

 

座右铭:站在别人的思想上,看见自己的不足,传播错误的经验,愿君不重蹈覆辙。

说明:这些都是书本上的知识,本人仅仅进行了罗列和排版,就是为方便本人以及大家学习。书为:《数据结构 》c语言版 第2版 严蔚敏 李冬梅 吴伟民编著

如果罗列有错误请指正。

如果对您有帮助,请点赞或转发,您的鼓励是本人前进的最好动力。
 
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值