一、基本定义:
树是n个结点的有限集,它可以是空树或者非空树。对于非空树:有且仅有一个根结点;除根结点外的所有其余结点可以分为m(m>0)个互不相交的有限集,并且每一个集合又是一棵树,称为根的子树。
二、基本术语:
-
结点:树中的一个独立单元。包含一个数据元素及若干指向其子树的分支。
-
结点的度: 结点拥有的子树数称为结点的度。
-
叶子:度为0的结点称之为叶子或终端结点。
-
树的度:树的度是树内各结点度的最大值。
-
双亲和孩子:结点的子树的根称为该结点的孩子。 该结点称为孩子的双亲。
-
兄弟:同一个双亲的孩子之间互称为兄弟。
-
层次:结点的层次从根开始定义起,根为第一层,根的孩子为第二层。树中任一结点的层次等于双亲结点层次加一。
-
树的深度:树中结点的最大层次称之为树的深度或者高度。
三、分类:
有序树:树中任意节点的子节点之间有顺序关系。
无序树:树中任意节点的子节点之间没有顺序关系。
推荐博客链接:https://blog.csdn.net/u010275850/article/details/44730373(分类更加详细)
四、存储结构:
1.双亲表示法
用一组连续的存储单元存储树的结点,每个结点包括数据域和指针域(指向双亲),最常用的表示法。
2.孩子表示法
两种结点:1 数据域+孩子1...+孩子n
2 数据域+degree(结点的度)+孩子1...+孩子n
3.孩子兄弟表示法
这个方法又称为二叉树表示法或者二叉链域表示法。
分为:数据域+指针域(指向第一个孩子结点和指向下一个兄弟结点)
任意一颗树都能够通过孩子兄弟法转化为二叉树进行存储。
五、树的遍历:
1.先根遍历树:先访问树的根节点,然后依次先根遍历根的每一棵子树。
2.后根遍历树:先依次后根遍历每棵子树,然后访问根结点。
先根遍历结果为:RADEBCFGHK
后根遍历结果为:DEABGHKFCR
六、二叉树:
重要的性质:1.在二叉树的第i层上至多有2^(i-1)个结点(i>=1)
2.深度为k的二叉树至多有2^k-1个结点(k>=1)
3对任何一颗二叉树T,如果终端结点数为n0,度为2的结点数为n2,则n0=n2+1.
(n=n1+2*n+1)
满二叉树:深度为k且含有2^k-1个结点的二叉树。
完全二叉树:深度为k的,含有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1到n的结点一一对应时,称为完全二叉树。
完全二叉树的特点:1叶子结点只可能在层次最大的两层上出现;
2.对于任一结点,若其右下分支的子孙的最大层次为l,则其左分支下的子孙的最大层次必为l或l+1
完全二叉树的性质:具有n个结点的完全二叉树的深度为【log2n】+1([x]:表示不大于x的最大整数)(书上符号打不出来)