【LeetCode 面试经典150题】5. Longest Palindromic Substring 最长回文子串

5. Longest Palindromic Substring(最长回文子串)

题目大意

Given a string s, return the longest palindromic substring in s.

中文释义

给定一个字符串 s,返回 s 中最长的回文子串。

示例

  • 示例 1:
    • 输入:s = "babad"
    • 输出:"bab"
    • 解释:“aba” 也是一个有效答案。
  • 示例 2:
    • 输入:s = "cbbd"
    • 输出:"bb"

限制条件

  • 1 <= s.length <= 1000
  • s 仅包含数字和英文字母。

解题思路

使用动态规划(DP)来解决问题。创建一个二维 dp 数组来标记子串是否为回文。

步骤说明

  1. 初始化一个二维 dp 数组,dp[i][j] 表示子串 s[i...j] 是否为回文串。
  2. 遍历所有可能的子串长度:
    • 对于每个起始位置 i,计算结束位置 j
    • 如果 s[i]s[j] 不同,dp[i][j] = false
    • 如果相同,检查子串长度是否小于等于 3 或者子串 s[i+1...j-1] 是否为回文(dp[i+1][j-1])。
    • 如果子串为回文,更新最长回文子串的起始位置和长度。
  3. 返回最长回文子串。

代码

class Solution {
public:
    string longestPalindrome(string s) {
        int length = s.length(), max_len = 1, start = 0;
        if (length < 2) return s;
        vector<vector<bool>> dp(length, vector<bool>(length, false));

        for (int i = 0; i < length; i++) {
            dp[i][i] = true;
        }

        for (int len = 2; len <= length; len++) {
            for (int i = 0; i < length - len + 1; i++) {
                int j = i + len - 1;
                if (s[i] != s[j]) {
                    dp[i][j] = false;
                } else {
                    if (j - i < 3) {
                        dp[i][j] = true;
                    } else {
                        dp[i][j] = dp[i + 1][j - 1];
                    }
                }
                if (dp[i][j] && len > max_len) {
                    start = i;
                    max_len = len;
                }
            }
        }
        return s.substr(start, max_len);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值