5. Longest Palindromic Substring(最长回文子串)
题目大意
Given a string s
, return the longest palindromic substring in s
.
中文释义
给定一个字符串 s
,返回 s
中最长的回文子串。
示例
- 示例 1:
- 输入:
s = "babad"
- 输出:
"bab"
- 解释:“aba” 也是一个有效答案。
- 输入:
- 示例 2:
- 输入:
s = "cbbd"
- 输出:
"bb"
- 输入:
限制条件
1 <= s.length <= 1000
s
仅包含数字和英文字母。
解题思路
使用动态规划(DP)来解决问题。创建一个二维 dp
数组来标记子串是否为回文。
步骤说明
- 初始化一个二维
dp
数组,dp[i][j]
表示子串s[i...j]
是否为回文串。 - 遍历所有可能的子串长度:
- 对于每个起始位置
i
,计算结束位置j
。 - 如果
s[i]
和s[j]
不同,dp[i][j] = false
。 - 如果相同,检查子串长度是否小于等于 3 或者子串
s[i+1...j-1]
是否为回文(dp[i+1][j-1]
)。 - 如果子串为回文,更新最长回文子串的起始位置和长度。
- 对于每个起始位置
- 返回最长回文子串。
代码
class Solution {
public:
string longestPalindrome(string s) {
int length = s.length(), max_len = 1, start = 0;
if (length < 2) return s;
vector<vector<bool>> dp(length, vector<bool>(length, false));
for (int i = 0; i < length; i++) {
dp[i][i] = true;
}
for (int len = 2; len <= length; len++) {
for (int i = 0; i < length - len + 1; i++) {
int j = i + len - 1;
if (s[i] != s[j]) {
dp[i][j] = false;
} else {
if (j - i < 3) {
dp[i][j] = true;
} else {
dp[i][j] = dp[i + 1][j - 1];
}
}
if (dp[i][j] && len > max_len) {
start = i;
max_len = len;
}
}
}
return s.substr(start, max_len);
}
};