二进制子集生成与排列组合

本文介绍了二进制在表示多重状态和排列组合中的应用,详细阐述了全排列的实现方法,包括STL的next_permutation函数以及递归回溯的方式。接着讨论了组合的生成,并通过二进制表示解决子集问题。文章还讲解了二进制运算符,如与、或、异或、非、左移和右移,并给出了实例。最后,通过一道实际的算法竞赛题目展示了如何利用这些知识解决复杂问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二进制子集生成与排列组合

咳咳,二进制我觉得很有必要单独列出来,二进制的玩法还是很多的,比较多的就是表示多重状态,因为只有1和0的存在,每一位可以表示可取或者不可取,还能配合排列组合使用,来试试。

  • 首先,我们来搞搞排列,列出n个数的全排列。
  • 这里我们有三种方法去搞定。想不到吧。
  • 首选当然是强大的STL提供的next_permutation函数,直接下一次排列。

在这里插入图片描述

  • 当然,除了下次排列,还有上次排列函数:perv_permutation(a,a+n);
  • 如果自己来写呢,我们可用递归回溯的方式写出来。

在这里插入图片描述

  • 对于每一组数列呢,每个元素都排在最前面。所以第一次循环就是一号元素要是每一个元素,后面swap换了之后要换回来,方便下一次的互换。
  • 这是排列,那组合怎么搞呢,比如,我5个里面只要取3个,怎么搞。
  • 也很简单呀,排列的输出判断条件是begin等于end,而组合不需要输出全部,所以只要把end设置为我们需要取的数,便可以了

在这里插入图片描述

  • 咳咳,咱不是讲二进制的满,怎么讲了这么多排列呢,害。
  • 接下来我们想想,如果题目不需要输出全排列,而是输出他的组合,就是他的子集(子集内部的元素无顺序之分),那该怎么办呢?
  • 我们知道,子集就是取或者不取的所有可能集合,那么取我就用1表示,不取我就用0表示,这刚刚好符合我们的二进制,一个数的子集,一共有2n种情况。
  • 那么怎么写呢?在此之前,我们得认识几个操作符

1. 与运算符(&)

  • 二元操作符,操作两个二进制数据;两个二进制数最低位对齐,只有当两个对位数都是1时才为1,否则为0
    int a = 3 & 2 ; 
    cout << a << endl;  //结果为 2 

    3的二进制补码表示为:
        00000000 00000000 00000000 00000011
    2的二进制补码表示为:
        00000000 00000000 00000000 00000010
    运算:3 & 2 
        00000000 00000000 00000000 00000011
    &   00000000 00000000 00000000 00000010
    -------------------------------------------
        00000000 00000000 00000000 00000010            二进制是2  


2. 或运算符(|)

  • 二元操作符,操作两个二进制数据;两个二进制数最低位对齐,当两个对位数只要有一个是1则为1,否则为0
    int a = 3 | 2 ; 
    cout << a << endl; //结果为 3 

    3的二进制补码表示为:
        00000000 00000000 00000000 00000011
    2的二进制补码表示为:
        00000000 00000000 00000000 00000010
    运算:3 | 2 
        00000000 00000000 00000000 00000011
    |   00000000 00000000 00000000 00000010
    -------------------------------------------
        00000000 00000000 00000000 00000011            该补码对应十进制为3  

3. 异或运算符(^)

  • 二元操作符,操作两个二进制数据;两个二进制数最低位对齐,只有当两个对位数字不同时
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木木不会

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值