Matlab求解线性方程组(一)共轭梯度法

一,算法原理

共轭梯度法可以看作是特殊的迭代法,有迭代法的格式,即首先给出x(0),再由迭代格式

x ( k + 1 ) = x ( k ) + α k d ( k ) {{x}^{(k+1)}}={{x}^{(k)}}+{{\alpha }_{k}}{{d}^{(k)}} x(k+1)=x(k)+αkd(k)

进行迭代,那么关键就是求出两个因素:方向 d ( k ) {{d}^{(k)}} d(k)和步长 α k {{\alpha }_{k}} αk

首先确定最佳步长 α k {{\alpha }_{k}} αk,假设 x ( k ) {{x}^{(k)}} x(k)和搜索方向 d ( k ) {{d}^{(k)}} d(k)已给定,那么通过一元函数

ϕ ( α ) = f ( x ( k ) + α k d ( k ) ) \phi (\alpha )=f({{x}^{(k)}}+{{\alpha }_{k}}{{d}^{(k)}}) ϕ(α)=f(x(k)+αkd(k))

求极小值。令 ϕ ′ ( α ) = 0 \phi '(\alpha )=0 ϕ(α)=0 ( α \alpha α 为变量,其他为已知数)得到:

[ A ( x ( k ) + α d ( k ) ) − b ] T d ( k ) = 0 {{\left[ A\left( {{x}^{(k)}}+\alpha {{d}^{(k)}} \right)-b \right]}^{T}}{{d}^{(k)}}=0 [A(x(k)+αd(k))b]Td(k)=0
( − r ( k ) + α A d ( k ) ) T d ( k ) = 0 {{(-{{r}^{(k)}}+\alpha A{{d}^{(k)}})}^{T}}{{d}^{(k)}}=0 (r(k)+αAd(k))Td(k)=0

其中 r ( k ) = b − A x ( k ) {{r}^{(k)}}=b-A{{x}^{(k)}} r(k)=bAx(k),由此解得最佳步长:

α ( k ) = r ( k ) T d ( k ) d ( k ) T A d ( k ) {{\alpha }_{(k)}}=\frac{{{r}^{{{(k)}^{T}}}}{{d}^{(k)}}}{{{d}^{{{(k)}^{T}}}}A{{d}^{(k)}}} α(k)=d(k)TAd(k)r(k)Td(k)

下面确定 d ( k ) {{d}^{(k)}} d(k),给定x(0)后,由于负梯度是函数下降最快的方向,故第一次迭代取搜索方向:

d ( 0 ) = r ( 0 ) = b − A x ( 0 ) {{d}^{(0)}}={{r}^{(0)}}=b-A{{x}^{(0)}} d(0)=r(0)=bAx(0)

 由上式可算出x(1)。由x(1)出发的搜索方向不再取r(1)而是取

d ( 1 ) = r ( 1 ) + β 0 d ( 0 ) {{d}^{(1)}}={{r}^{(1)}}+{{\beta }_{0}}{{d}^{(0)}} d(1)=r(1)+β0d(0)
由于 d ( 0 ) {{d}^{(0)}} d(0) d ( 1 ) {{d}^{(1)}} d(1)为共轭向量,满足 ( d ( 1 ) A d ( 0 ) ) = 0 ({{d}^{(1)}}A{{d}^{(0)}})=0 (d(1)Ad(0))=0,可求得 β 0 {{\beta }_{0}} β0并给出 β k {{\beta }_{k}} βk的一般表达式:
β k = − r ( k + 1 ) T A d ( k ) d ( k ) T A d ( k ) {{\beta }_{k}}=-\frac{{{r}^{{{(k+1)}^{T}}}}A{{d}^{(k)}}}{{{d}^{{{(k)}^{T}}}}A{{d}^{(k)}}} βk=d(k)TAd(k)r(k+1)TAd(k)

再由 d ( k + 1 ) = r ( k + 1 ) + β k d ( k ) {{d}^{(k+1)}}={{r}^{(k+1)}}+{{\beta }_{k}}{{d}^{(k)}} d(k+1)=r(k+1)+βkd(k)算出 d ( k + 1 ) {{d}^{(k\text{+}1)}} d(k+1)

综上所述得出共轭梯度法的计算公式

{ d ( 0 ) = r ( 0 ) = b − A x ( 0 ) α k = r ( k ) T d ( k ) d ( k ) T A d ( k ) x ( k + 1 ) = x ( k ) + α k d ( k ) r ( k + 1 ) = b − A x ( k + 1 ) β k = − r ( k + 1 ) T A d ( k ) d ( k ) T A d ( k ) d ( k + 1 ) = r ( k + 1 ) + β k d ( k ) \left\{ \begin{array}{l} {d^{(0)}} = {r^{(0)}} = b - A{x^{(0)}}\\ {\alpha _k} = \frac{{{r^{{{(k)}^T}}}{d^{(k)}}}}{{{d^{{{(k)}^T}}}A{d^{(k)}}}}\\ {x^{(k + 1)}} = {x^{(k)}} + {\alpha _k}{d^{(k)}}\\ {r^{(k + 1)}} = b - A{x^{(k + 1)}}\\ {\beta _k} = - \frac{{{r^{{{(k + 1)}^T}}}A{d^{(k)}}}}{{{d^{{{(k)}^T}}}A{d^{(k)}}}}\\ {d^{(k + 1)}} = {r^{(k + 1)}} + {\beta _k}{d^{(k)}} \end{array} \right. d(0)=r(0)=bAx(0)αk=d(k)TAd(k)r(k)Td(k)x(k+1)=x(k)+αkd(k)r(k+1)=bAx(k+1)βk=d(k)TAd(k)r(k+1)TAd(k)d(k+1)=r(k+1)+βkd(k)

二,程序框图

在这里插入图片描述

三,源代码

1,主函数(实现共轭梯度求解方程组)

%共轭梯度法求线性方程组
%   'A';系数矩阵
%   'b':右端项
%   'e0':求解精度
function [error,x]=gongetidu(A,b,e0)
%给定初始向量x0和计算精度e0,error代表误差。
n=length(b);
x=zeros(n,1);
r=b-A*x;				%r为误差
d=r;					%d为搜索方向
i=1;
for k=1:n
    alpha=(r'*d)/(d'*A*d);
    x=x+alpha*d;
    r1=b-A*x; 
    error(i)=norm(r1);
    bt=-(r1'*A*d)/(d'*A*d);
    d=r1+bt*d;
    r=r1;
    i=i+1;
    if norm(r1)<=e0
        break;
    end
end

2,建立课本计算实习3.2方程组的系数矩阵及右端项

%建立课本计算实习3.2方程组的系数矩阵及右端项
function [A,b]=build(n)
A=zeros(n,n);
b=zeros(n,1);
b(1)=-1;
b(n)=-1;
for i=1:n
    A(i,i)=-2;
end
for j=1:n-1
    A(j,j+1)=1;
end
for j=2:n
    A(j,j-1)=1;
end

四,实例分析

计算实例P113:用共轭梯度法求解线性方程组Ax=b,其中
在这里插入图片描述
矩阵A的阶数n分别取为100,200,400,指出计算结果是否可靠。
解:输入以下代码

clc;
clear;
n=input('Please input n:');				%输入矩阵A的阶数
e0=input('Please input the accuracy:');
[A,b]=build(n);						%建立课本例3.2方程组系数矩阵及右端项
[error,x]=gongetidu(A,b,e0);             %使用共轭梯度法进行迭代求解
q=log(error);
plot(q,'linewidth',1.5)
xlabel('迭代次数');
ylabel('log(error)');
title('共轭梯度法迭代误差变化曲线');

例,n=100时,迭代50次后满足精度要求,其误差曲线如下图所示。
在这里插入图片描述

  • 23
    点赞
  • 179
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值