E - 选做题11-1 东东与 ATM
Examples
input
735 3 4 125 6 5 3 350
633 4 500 30 6 100 1 5 0 1
735 0
0 3 10 100 10 50 10 10
output
735
630
0
0
题目分析
- 典型的背包问题
- 使用二进制拆分转化为简单的背包问题
- 状态表示为仅考虑前i种面值的最多现金数
- 转移方程 dp[i][j] = max{dp[i-1][j],dp[I-1][j-v[i]]+v[i]}
完整代码
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1e5 + 10;
int dp[maxn],D[15],num[15],vv[110];
int cash, N;
int n, d;
int cnt = 0;
void chai(int i)
{
for (int k = 1; k <= num[i]; k <<= 1)
{
vv[cnt++] = k * D[i];
num[i] -= k;
}
if (num[i] >= 0)
vv[cnt++] = num[i] * D[i];
}
int main()
{
while (cin >> cash >> N)
{
for (int i = 1; i <= N; i++)
cin >> num[i] >> D[i];
for (int i = 1; i <= N; i++)
chai(i);
for (int i = 0; i < cnt; i++)
{
for (int v = cash; v >= 0; v--)
{
if (vv[i] <= v)
dp[v] = max(dp[v], dp[v - vv[i]] + vv[i]);
}
}
cout << dp[cash] << endl;
for (int i = 0; i <= cash; i++)
{
cnt = 0;
dp[i] = 0;
}
}
return 0;
}
F - 选做题11-2 东东开车了
东东开车出去泡妞(在梦中),车内提供了 n 张CD唱片,已知东东开车的时间是 n 分钟,他该如何去选择唱片去消磨这无聊的时间呢
假设:
- CD数量不超过20张
- 没有一张CD唱片超过 N 分钟
- 每张唱片只能听一次
- 唱片的播放长度为整数
- N 也是整数
我们需要找到最能消磨时间的唱片数量,并按使用顺序输出答案(必须是听完唱片,不能有唱片没听完却到了下车时间的情况发生)
本题是 Special Judge
Input
多组输入
每行输入第一个数字N, 代表总时间,第二个数字 M 代表有 M 张唱片,后面紧跟 M 个数字,代表每张唱片的时长 例如样例一: N=5, M=3, 第一张唱片为 1 分钟, 第二张唱片 3 分钟, 第三张 4 分钟
所有数据均满足以下条件:
N≤10000 M≤20
Output
输出所有唱片的时长和总时长,具体输出格式见样例
Examples
intput
5 3 1 3 4
10 4 9 8 4 2
20 4 10 5 7 4
90 8 10 23 1 2 3 4 5 7
45 8 4 10 44 43 12 9 8 2
output
1 4 sum:5
8 2 sum:10
10 5 4 sum:19
10 23 1 2 3 4 5 7 sum:55
4 10 12 9 8 2 sum:45
题目解析
- 0/1背包问题,关键在于要求输出选择唱片的顺序
- 定义一个pre[i][j]数组,表示dp[i][j]是由dp[i-1][x]转化过来的
- 然后最后倒序输出即可
完整代码
#include<iostream>
#include<algorithm>
using namespace std;
int n, m;
int dp[10010], pre[25][10010], tim[30];
void print(int i,int j)
{
if (pre[i][j] != 0)
print(i-1,pre[i][j]);
if(j!=pre[i][j])
cout << j - pre[i][j] << ' ';
}
int main()
{
while (cin>>n>>m)
{
for (int i = 1; i <= m; i++)
cin >> tim[i];
for(int i = 0;i<=n;i++)
dp[i] = 0;
for (int i = 1; i <= m; i++)
for (int j = 0; j <= n; j++)
pre[i][j] = 0;
for (int i = 1; i <= m; i++)
{
for (int j = n; j >= 0; j--)
{
if (tim[i] <= j && dp[j - tim[i]] + tim[i] > dp[j])
{
dp[j] = dp[j - tim[i]] + tim[i];
pre[i][j] = j - tim[i];
}
else
pre[i][j] = j;
}
}
print(m,dp[n]);
cout<<"sum:" << dp[n] << endl;
}
return 0;
}