- 博客(369)
- 资源 (6)
- 收藏
- 关注
原创 Conditional DETR for Fast Training Convergence论文学习
最近提出的 DETR 成功地将 transformer 引入到物体检测任务中,获得了很不错的性能。DETR 的重要意义在于去除了物体检测算法里需要人工设计的部分,比如 anchor 的生成和 NMS 操作。这大大简化了物体检测的设计流程。基本的结构还是沿用了以前的结构,基础的CNN提取特征,送入到encoder中后,又用decoder进行解码还原,最终通过FNN进行预测。
2025-01-30 23:28:53
1058
1
原创 Deformable DETR:Deformable Transformers for End-to-End Object Detection论文学习
因为DETR本身的计算量大,收敛速度慢。其次是小目标检测效果差。主要原因是Deformable DETR注意力模块只关注一个query周围的少量关键采样点集,采样点的位置并非固定,而是可学习的。同时,受到deformable convolution(可变性卷积)的启发,认为Attention模块也可以关注更灵活的采样点,让每个位置不必和所有位置交互计算,只需要和部分(学习来的,重要的部分)进行交互即可,进而提出deformable attention模块。
2024-12-23 12:35:14
1280
原创 DETR: End-to-End Object Detection with Transformers论文学习
DETR 是 Facebook 团队于 2020 年提出的基于 Transformer 的端到端目标检测,是Transformer在目标检测的开山之作 – DEtection TRansformer。无需NMS后处理2无需设定anchor高效并行预测。整个由网络实现端到端的目标检测实现,大大简化了目标检测的 pipeline。DETR在COCO 数据集上效果与 Faster RCNN 相当,在大目标上效果比 FasterRCNN 好,且可以很容易地将 DETR迁移到其他任务例如全景分割。
2024-12-14 21:29:23
1888
原创 Transformer相关学习资料整理
最近频繁看到论文中用到transformer,于是又回头看了看曾经经典的大作。以前只知道大致流程,本次死磕一波,好好梳理细节和内容,因网上大部分资料讲的内容都不错,遂做整理。1. Transformer相关内容变形金刚——Transformer入门刨析详解【Transformer】一文搞懂Transformer | CV领域中Transformer应用图解Transformer | The Illustrated Transformer,这篇文章做的很用心李宏毅2022讲解transformer
2024-12-12 11:06:22
617
原创 huggingface-cli下载数据(含下载指定数据教程)
可以理解为配置下载对应文件时候要使用的源。如果要避免这个情况,请将上面这一行写入Linux中的。表示下载指定数据目录,以safetensors结尾的,不下载.bin结尾的文件。注意:使用wget命令并不会得到下载好的大文件内容,这点需要注意。为什么会要这么做,tmd下载一半电脑挂了,头大。上述配置环境变量代码,每次下载前均需要配置。Windows环境没测试过。wikitext文件夹中。
2024-12-06 15:35:14
6768
1
原创 用python实现自动登录操作(含验证码识别)
验证码识别有多种方式,离线方式可以采用python包版本进行配置,对于在线验证的方式,尤其是图片式验证码,上述方式可以完美解决,效果还不错。
2024-11-21 17:41:50
1145
原创 OSError: We couldn‘t connect to ‘https://huggingface.co‘ to load this file, couldn‘t find it(亲测有效)
意思是无法访问这个网址,主要是代码会从huggingface上下载模型,但是国内又存在墙的问题,因此,我们有两种解决方式。
2024-10-20 21:52:42
8409
12
原创 AutoGen实现多代理—Coding_and_Financial_Analysis(五)
与其每次都让大型语言模型生成下载股票数据和绘制图表的代码,你可以为这两项任务定义函数,并让大型语言模型在代码中调用这些函数。Args:Returns:symbol.Args:"""plt.plot(将定义的执行器prompt,与write提示词连接,形成一个巨大的promptArgs:Returns:symbol."""...Args:"""...最后,以OpenAI可以理解的形式构造了一个很大的prompt。
2024-10-01 09:00:00
806
1
原创 AutoGen实现多代理-Planning_and_Stock_Report_Generation(六)
总的来说,对任务进行分解和规划存在多种方式,我们只展示了一种设计模式,代理之间的回答方式和存在的回复顺序对于程序结果至关重要,这点在群聊模式中是可扩展的重要内容,对于代码设计值得学习思考。
2024-10-01 09:00:00
465
原创 AutoGen实现多代理-Tool_Use_and_Conversational_Chess(四)
本篇内容以下棋为案例,模拟了三个不同代理的嵌套式聊天,最大的特点是允许代理可以使用定义的工具,扩展了代理的功能。此外,嵌套式工作流是可以借鉴的地方,如何让多代理进行嵌套式聊天,从而解决问题是一个不错的思路。
2024-09-30 09:30:00
684
原创 AutoGen框架进行多智能体协作—反思与提升博客文章质量(三)
多轮对话是多代理的重点核心内容,需要注意的是,多代理之间的对话轮次和约束条件是内容管理的重中之重,因此对于对话质量和效率的把控,很大程度取决于base模型,其次是子任务规划,如何让任务合理合规非常重要。
2024-09-30 09:00:00
526
原创 AutoGen实现多代理—AI Agentic Design Patterns with AutoGen(二)
本篇讲述了AutoGen实现多代理之间按照顺序对话的过程,并最终根据上下文产生输出结果。体现了多代理之间协作的设计模式。
2024-09-29 11:30:00
596
原创 AutoGen框架进行多智能体协作—AI Agentic Design Patterns with AutoGen(一)
cathy,以上只是使用代理构建对话的基本示例。在接下来的课程中,我们将学习其他对话模式和一些代理设计模式,包括工具使用、反思、规划和代码执行等。
2024-09-29 09:00:00
709
原创 微调大模型(Finetuning Large Language Models)—Evaluation(六)
整体看,模型的评估目前没有一个统一的指标或者标准,场景适配大于统一标准,其次是介绍了几种适配的评估方法,可以借鉴参考。
2024-09-28 11:30:00
712
原创 十分钟实现内网连接,配置frp
十分钟实现内网穿透,配置frp一.frp是什么?其实是一款实现外网穿透内网的一个工具,个人理解,说白了就像是teamviwer一样,外网能访问内网。利用处于内网或防火墙后的机器,对外网环境提供 http 或 https 服务。 利用处于内网或防火墙后的机器,对外网环境提供 tcp 和 udp 服务,例如在家里通过 ssh...
2024-09-28 11:13:12
3528
3
原创 微调大模型(Finetuning Large Language Models)—Training tuning(五)
Tokenizetext,# Generate# Decode整体看,lamini微调模型低代码做的还是不错,微调最重要的是准备好数据集、参数配置,剩下的就是本地加载和读取内容,课程内容不错,有机会还是自行跑跑实验,理解会加深不少。
2024-09-28 10:00:00
739
原创 微调大模型(Finetuning Large Language Models)—Data_preparation(四)
本节讲述了大模型微调前的数据准备工作,最重要的是模型的tokenizer以及截断策略和数据的划分,自己的数据集在制作过程中,仅需遵照上述流程即可,剩下的数据质量自行把握。
2024-09-27 09:33:56
1039
原创 微调大模型(Finetuning Large Language Models)—Instruction_tuning(三)
指令微调,个人理解就是搞prompt模板,从而对输出内容进行标准化输出,本节实验感觉没啥内容,看看就好。
2024-09-27 08:00:00
359
1
原创 微调大模型(Finetuning Large Language Models)—Where finetuning fits in(二)
数据的准备是微调的基础,良好的数据质量是成功的一半,数据准备前置工作举足轻重。
2024-09-26 18:09:39
576
原创 微调大模型(Finetuning Large Language Models)—Why Finetune(一)
微调就是将诸如GPT-3之类的通用模型专门化,例如将其专门用于聊天的ChatGPT,以使其具有良好的聊天功能,或者使用GPT-4并将其转变为专门用于自动完成代码的GitHub Copilot用例!说白了就是让模型拥有专业化能力。我们可以看到,未经过微调的模型和经过微调的模型,输出的效果差异巨大,因此,为了让我们的模型在我们的非通用领域上具有更好的表现性能,微调现有模型是非常重要且有效的做法,可以为我们提供较好的结果。
2024-09-26 16:05:39
772
2
原创 win10下执行 conda activate 虚拟环境报错
前几天手贱删除了某配置的虚拟环境,今天突然用conda activate就不行了,出现报错: CondaError: Run 'conda init' before 'conda activate'。我的操作是在window环境下进行的。有的说执行:先执行activate进入虚拟环境后再执行上面这些都没什么卵用。
2024-09-09 19:46:12
1695
2
原创 用LangGraph搭建智能体—AI Agents in LangGraph(四、持久化和流式输出)
本节学习了持久化和流式输出,最后还有个异步流式输出,按部就班即可。
2024-07-22 17:10:16
2945
原创 用LangGraph搭建智能体—AI Agents in LangGraph(三)
可以看到搜索工具,基于代理的搜索和常规搜索代码量确实有差距,代理搜索更加简洁和高效,且无需进行过多内容的过滤。
2024-07-22 08:50:20
486
原创 用LangGraph搭建智能体—AI Agents in LangGraph(二)
LangGraph组件其实就是把链式的Agent执行过程,通过graph形式构造出来并执行,具体怎么执行,调用了哪些函数,建议手动debug一次,看看执行流程。
2024-07-21 19:57:05
1012
2
原创 用LangGraph搭建智能体—AI Agents in LangGraph(一)
i = 0 # 控制循环轮次bot = Agent(prompt) # 初始化i += 1result = bot(next_prompt) # 每次将执行的结果,作为下一次提示词返回给模型] # Action函数用于得到过滤后的结果,用于获取后续函数执行时的输入和参数observation = known_actions[action](action_input) # 调用函数得到结果。
2024-07-20 23:58:01
1851
1
原创 JupyterNotebook中导出当前环境,并存储为requirements.txt
使用Anaconda管理Python环境时,可以轻松地导出环境配置,以便在其他机器或环境中重新创建相同的环境。可以通过生成一个environment.yml文件实现的,该文件包含了环境中安装的所有包及其版本。但是,常常在一些课程中JupyterNotebook代码能跑通,自己的环境却不行,保持版本的一致性变得非常重要,因此需要导出可用的包。在Jupyter Notebook中,可以使用以下步骤将Python环境导出为requirements.txt文件。
2024-07-11 15:50:44
1148
原创 LLM应用构建前的非结构化数据处理(三)文档表格的提取
可以看到,非结构化数据识别还是有难度,不知道为什么,实验中部分识别结果是错的,如果追求准确性,还是得斟酌一下。
2024-07-09 23:35:02
736
原创 LLM应用构建前的非结构化数据处理(二)元数据的提取和文档切分
本节内容对元数据进行了学习,元数据对于文档数据的提取、文档的切分工作意义重大,但是也要注意,识别过程中可能会出现Title分类错误的问题,需要观察。
2024-07-09 18:03:44
761
原创 LLM应用构建前的非结构化数据处理(一)标准化处理认识数据
上述案例可以实现对非机构化文档的标准化,随后就可以对数据进行愉快的处理了。课程具体学习地址见参考链接1。
2024-07-09 15:45:16
667
原创 LangChain学习之Agent的相关操作
在LangChain for LLM应用程序开发中课程中,学习了LangChain框架扩展应用程序开发中语言模型的用例和功能的基本技能,遂做整理为后面的应用做准备。。
2024-06-05 18:15:35
742
原创 LangChain学习之Evaluation的相关操作
在LangChain for LLM应用程序开发中课程中,学习了LangChain框架扩展应用程序开发中语言模型的用例和功能的基本技能,遂做整理为后面的应用做准备。。
2024-06-05 14:51:29
564
原创 LangChain学习之 Question And Answer的操作
Q&A可以用一行代码完成,也可以把它分成五个详细的步骤,可以查看每一步的详细结果。五个步骤可以详细的让我们理解到它底层到底是如何执行的。此外,参数还有其他三种,可以根据实际情况选取合适的参数,另外三种如图,有需要可以根据实际情况选取合适的参数进行实验。
2024-06-04 22:02:09
1044
原创 LangChain学习之Chains的执行过程
chain这个例子还有些模糊,需要自己动手实践,特别是RouterChain,看的还有些头大,再接再厉。
2024-06-03 22:19:37
686
原创 LangChain学习之四种Memory模式使用
在LangChain for LLM应用程序开发中课程中,学习了LangChain框架扩展应用程序开发中语言模型的用例和功能的基本技能,遂做整理为后面的应用做准备。。
2024-06-02 21:19:10
754
原创 LangChain学习之prompt格式化与解析器使用
Tough luck!See ya!""" # 继续使用前面定义的prompt_template,占位符用参数填充 service_messages = prompt_template . format_messages(style = service_style_pirate , text = service_reply) print(service_messages [ 0 ] . content)text: ```See ya!```
2024-06-02 17:37:41
1518
原创 OpenAI的API代码测试
为什么要让看官方文档和账户余额,是因为调用API时候,使用的token是收费的。最简单的方式就是充值购买token,或者使用免费的API。代码可以成功运行,可以愉快体验了。
2024-05-28 10:07:42
1337
原创 OpenAI调用API实践总结
最简单的方式就是充值购买token,又或者找到伟大的公益项目,免费使用ChatGPT API。切记key生成只显示一次,请妥善保存,如果没记录下来,那就只能删除重建了。授权成功后请妥善保存,该key无需代理。运行通过,可以愉快体验了。
2024-05-28 09:10:30
1043
迁移学习(office数据集,office10和office31)
2019-11-25
Mybatis-Generator自动生成Dao、Model、Mapping相关文件
2018-12-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人