sabcasjkd
码龄6年
关注
提问 私信
  • 博客:51,004
    社区:319
    51,323
    总访问量
  • 72
    原创
  • 1,937,177
    排名
  • 11
    粉丝
  • 0
    铁粉

个人简介:是只小猴子

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2018-10-25
博客简介:

qq_43519498的博客

查看详细资料
个人成就
  • 获得24次点赞
  • 内容获得14次评论
  • 获得46次收藏
创作历程
  • 1篇
    2023年
  • 13篇
    2021年
  • 19篇
    2020年
  • 40篇
    2019年
成就勋章
TA的专栏
  • 数据科学
    12篇
  • python
    2篇
  • 安卓开发
  • 机器学习
    6篇
  • 数据可视化
    5篇
  • JavaScript
    20篇
  • C语言
    1篇
  • C语言知识整理
    9篇
  • photoshop
    1篇
  • C语言习题
    4篇
  • c++
    14篇
  • c++知识点
    13篇
  • Python爬虫
    6篇
  • 数据结构
    1篇
  • 其他
    1篇
兴趣领域 设置
  • 学习和成长
    面试
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

357人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Pandas常用操作整理

【代码】Pandas常用操作整理。
原创
发布博客 2023.08.24 ·
183 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[安卓开发] Kotlin利用okhttp3与后端通信

一定要看一眼后面的避坑建议,否则可能会遇到BUG。1. 代码模板1.1 Get通信fun getMessage(){ // 使用okhttp前需先在AndroidManifest.xml中对网络进行配置,否则直接failure // Get通信函数 val client = OkHttpClient.Builder().readTimeout(5, TimeUnit.SECONDS).build() val request = Reque
原创
发布博客 2021.06.02 ·
1294 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

[机器学习-笔记07] 支持向量机

1. 原理直觉解释:SVM需要尝试找到满足红点和绿点分别到边界线的最小距离的最大值的那条边界。2. Python案例实现2.1 数据案例中使用的数据结构如下(只展示了部分样本):2.2 实现代码部分与[机器学习-笔记06]逻辑回归的案例代码部分类似,主要在模型拟合那部分有所改动,因此相似的代码就省略了。from sklearn.svm import SVC# 拟合模型classifier = SVC(kernel = 'linear', random_state = 0)class
原创
发布博客 2021.04.19 ·
161 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[机器学习-笔记06]逻辑回归

1.原理假设函数Sigmoid函数图像:决策界限代价函数整合后的代价函数:2. Python案例实现2.1 数据数据格式如下(只展示了部分样本):2.2 实现
原创
发布博客 2021.04.19 ·
285 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

[机器学习-笔记05] 回归模型表现评估

1. R2剩余平方和共平方和R22. 广义R2随着新自变量的加入R2不会下降[注1] 特征过多会造成模型过拟合。广义R2随着自变量个数的升高,Adj R^2会受到惩罚。
原创
发布博客 2021.04.18 ·
175 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

[数据可视化-笔记05] Python&Leather多图Grid

实现data1 = [(1, 3),(2, 5),(3, 3),(5, 2)]data2 = [(3, 4),(5, 6),(7, 10),(8, 2)]chart1 = leather.Chart('Dots')chart1.add_dots(data1, fill_color="blue")chart2 = leather.Chart('Lines')chart2.add_line(data2, stroke_color="red")grid = leather.Grid()g.
原创
发布博客 2021.04.18 ·
91 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[数据可视化-笔记04] Python&Leather画柱状图

API如下:add_columns(data, x=None, y=None, name=None, fill_color=None)实现:import leather# 数据data1 = [['A',2],['B',3],['C',1],['D',4],['E',5],['F',2]]# 可视化chart = leather.Chart("My Column Chart")chart.add_columns(data1, fill_color="red")chart.add_y
原创
发布博客 2021.04.18 ·
107 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[数据可视化-笔记03] Python&Leather画条形图

API如下:add_bars(data, x=None, y=None, name=None, fill_color=None)实现:import leather# 数据data1 = [[2,'A'],[3,'B'],[1,'C'],[4,'D']]# 可视化chart = leather.Chart("My Bar Chart")chart.add_bars(data1, fill_color="blue")chart.add_x_scale(0,5)# 显示图像chart
原创
发布博客 2021.04.18 ·
109 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[机器学习-笔记04] 多项式回归

1. 原理多项式回归方程:应用情境:2. Python案例实现2.1 数据共10条数据,如下:2.2 实现import numpy as npimport pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.linear_model import LinearRegressionfrom sklearn.preprocessing import PolynomialFeatu
原创
发布博客 2021.04.18 ·
129 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[数据可视化-笔记02] Python&Leather画折线图

API如下:add_line(data, x=None, y=None, name=None, stroke_color=None, width=None)实现:import leather# 数据data1 = [[1.5,2],[2,3.5],[3,2.5],[4,4.8],[5,1.2]]data2 = [[1.5,2],[2.3,4],[3,3],[4,2.3],[5,0.9]]# 可视化chart = leather.Chart("My Line Chart")chart
原创
发布博客 2021.04.17 ·
113 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[数据可视化-笔记01] Python&Leather画点图

API如下:add_dots(data, x=None, y=None, name=None, fill_color=None, radius=None)实现:import leather# 数据data1 = [[1.5,2],[2,3.5],[1.8,2.5],[3.3,4.8],[0.9,1.2]]data2 = [[2.6,2],[2.4,1.3],[4.8,2.5],[1.1,2.3],[4.8,0.9]]# 可视化chart = leather.Chart("My Cha
原创
发布博客 2021.04.17 ·
166 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[机器学习-笔记03] 多元线性回归

1. 多元线性回归原理多元线性回归的方程如下:使用多元线性回归时需满足的假设:线性、同方差性、多元正态分布、误差独立、无多重共线性虚拟变量:可以看下这篇对虚拟变量的直观介绍:什么是虚拟变量?怎么设置才正确?虚拟变量陷阱:所谓的“虚拟变量陷阱”就是当一个定性变量含有m个类别时,模型引入m个虚拟变量,造成了虚拟变量之间产生完全多重共线性,无法估计回归参数。下图例子中若同时加入New York和California的虚拟变量则会使得D2=1-D1成立,从而造成多重共线性,掉入虚拟变量陷进。因
原创
发布博客 2021.04.18 ·
439 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

[机器学习-笔记02] 简单线性回归

1. 简单线性回归原理简单(一元)线性回归的方程如下:二维平面表示:b0和b1的含义:模型拟合:2. Python案例实现2.1 数据我们用到的数据如下:2.2 实现# Simple Linear Regression# Importing the librariesimport numpy as npimport matplotlib.pyplot as pltimport pandas as pd# Importing the datasetdataset
原创
发布博客 2021.04.17 ·
239 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

[机器学习-笔记01] 数据预处理

1. 导入标准库数据2. 导入数据集3. 缺失数据处理4. 分类数据处理5. 训练集&测试集拆分6. 特征缩放7. 数据预处理模板
原创
发布博客 2021.04.15 ·
248 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

[JS] 第十四课:Error

1. 创建Errornew Error(message);功能:创建一个Error对象,运行时抛出参数:错误信息返回值:Error实例2. 抛出/捕获Errortry{ throw new Error('Error-1');}catch(Error){ alert(Error);}try{ variable; //未定义的变量,主动抛出异常}catch(Error...
原创
发布博客 2020.01.15 ·
205 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[JS] 第十三课:JSON

1. 合法的JSON格式JSON对象格式{ 字符串型键 : 值, 字符串型键 : 值, ...}JSON数组[value1, value2 ...]value可以是:string、number、object、array、true、false、null2. JSON方法JSON.parse(text[,reviver])功能:JSON转化为JS值或对象参数:...
原创
发布博客 2020.01.15 ·
132 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[JS] 第十二课:正则表达式

1. 正则表达式的创建直接量创建/pattern/attrs对象创建new RegExp(pattern,attrs)参数:pattern:描述性质的字符串attrs:修饰符2. 正则表达式语法直接量字符字母和数字/123abc/ //--->代表字母或数字本身非字母的字符匹配符号含义\oNULL\t...
原创
发布博客 2020.01.15 ·
145 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[JS] 第十课:数组

1. 数组的创建通过构造函数创建数组 var array = new Array();//------>创建一个空数组 var array = new Array(2);//------>创建一个长度为2的数组 var array = new Array(1,2,3);//------>创建一个为[1,2,3]的数组使用数组字面量创建数组var array ...
原创
发布博客 2020.01.13 ·
180 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[JS] 第十一课:Date

1. 基本概念在JS中,时间由毫秒为单位的数字表示。时间范围:⚠️起点:01 January, 1970 UTC⚠️范围:[-100,000,000毫秒 , 100,000,000毫秒]2.创建时间//----1new Date(); //代表创建当前时间//----2new Date(value); //传入一个整数,单位为毫秒,从起点时间算起//----3new ...
原创
发布博客 2020.01.12 ·
133 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[JS] 第九课:对象

1. 创建对象三种创建对象的方式://-----1var programmer=new Object();//-----2var programmer={};//-----3var programmer=Object.create(Object.prototype);Object.create()Object.create(新创建对象的原型对象,添加到新创建对象的属性),最后返...
原创
发布博客 2020.01.12 ·
114 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多