1. 多元线性回归原理
- 多元线性回归的函数如下:
- 使用多元线性回归时需满足的假设:
线性、同方差性、多元正态分布、误差独立、无多重共线性 - 虚拟变量:
可以看下这篇对虚拟变量的直观介绍:什么是虚拟变量?怎么设置才正确? - 虚拟变量陷阱:
所谓的“虚拟变量陷阱”就是当一个定性变量含有m个类别时,模型引入m个虚拟变量,造成了虚拟变量之间产生完全多重共线性,无法估计回归参数。
下图例子中若同时加入New York和California的虚拟变量则会使得D2=1-D1
成立,从而造成多重共线性,掉入虚拟变量陷进。
因此,为避免虚拟变量陷进,应在同一组虚拟变量中剔除一个虚拟变量。
- 自变量5种选择方法:
Method1: All-In
Method2: 反向淘汰
Method3: 顺向选择
Method4: 双向淘汰
Method5: 信息量比较
相对而言,反向淘汰是最常用的。
2. Python案例实现
2.1 数据

2.2 实现
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# 读入数据集
dataset = pd.read_csv("50_Startups.csv")
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values
# 分类数据编码
encoder = OneHotEncoder()
code = encoder.fit_transform(X[:,3].reshape(-1,1)).toarray()
X = np.delete(X, 3, axis=1)
X = np.hstack((X, code[:,:-1]))
# 拆分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 模型拟合
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# 预测
y_pred = regressor.predict(X_test)
# 评估
MAE = np.mean(np.abs(y_pred-y_test))
print("MAE: ", MAE)
以上是基础的实现,接下来我们利用反向淘汰法对特征进行选取,从而对模型进行进一步的优化。
import statsmodels.api as sm
# 在进行反向淘汰前,先对X_train加入常数项
X_train = np.hstack((X_train, np.ones((40,1))))
# X_opt为X最优情况
X_opt = np.array(X_train[:, [0, 1, 2, 3, 4, 5]], dtype = float)
# OLS: Ordinary Least Square
regressor_OLS = sm.OLS(endog = y_train, exog = X_opt).fit()
regressor_OLS.summary()
上述代码运行结果:
根据方向淘汰法,我们需要剔除x4
。
以此类推,直到对X_train
完成优化,并重新建模。