#机器学习--线性代数基础--第二章:矩阵及其运算

本文介绍了线性代数中的矩阵概念,包括矩阵的定义、类型、运算以及逆矩阵、矩阵的秩和克拉默法则。重点阐述了矩阵的加减、数与矩阵的乘法、矩阵乘法、转置和行列式的性质。同时,讨论了矩阵的初等变换、行阶梯形矩阵、行最简形矩阵以及标准形,展示了如何通过初等变换求解线性方程组。最后,提到了线性方程组解的存在性和唯一性的判断准则。
摘要由CSDN通过智能技术生成

1、矩阵的定义

        由 m × n m\times n m×n 个数 a i j a_{ij} aij 排成的 m m m n n n 列的数表称为 m m m n n n 列矩阵,简称 m × n m\times n m×n 矩阵。


2、常用矩阵

        1)若行数与列数都等于 n n n 的矩阵称为 n n n 阶矩阵或 n n n 阶方阵。

        2)只有一行的矩阵称为行矩阵行向量,只有一列的矩阵称为列矩阵列向量

        3)若两个矩阵的行数相等、列数也相等时,就称它们是同型矩阵

        4)元素都是 0 的矩阵称为零矩阵,记为 O O O

        5)若 n n n 阶方阵除对角线外的元素都是0,则称这种方阵为对角矩阵。特殊的,如果对角矩阵的对角线元素都是1,则称为单位矩阵,简称单位阵,记为 E E E

        6)对于常数项不全为 0 的 n n n 元非齐次线性方程组:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 … a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m \left\{\begin{matrix} a_{11}x_{1}+a_{12}x_{2}+\dots +a_{1n}x_{n}=b_{1} \\ a_{21}x_{1}+a_{22}x_{2}+\dots +a_{2n}x_{n}=b_{2} \\ \dots \\ a_{m1}x_{1}+a_{m2}x_{2}+\dots +a_{mn}x_{n}=b_{m} \end{matrix}\right. a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2am1x1+am2x2++amnxn=bm        有如下常用矩阵:
A = ( a i j ) , x = ( x 1 x 2 ⋮ x n ) , b = ( b 1 b 2 ⋮ b m ) , B = ( a 11 a 12 … a 1 n b 1 a 21 a 22 … a 2 n b 2 ⋮ ⋮ ⋮ ⋮ a m 1 a m 2 … a m n b m ) \textbf{A}=(a_{ij}),\textbf{x}=\begin{pmatrix}x_{1}\\x_{2}\\\vdots \\x_{n}\end{pmatrix},\textbf{b}=\begin{pmatrix}b_{1}\\b_{2}\\\vdots \\b_{m}\end{pmatrix},\textbf{B}=\begin{pmatrix}a_{11}& a_{12}& \dots &a_{1n} &b_{1} \\a_{21}& a_{22}& \dots &a_{2n} &b_{2} \\\vdots & \vdots & &\vdots &\vdots\\a_{m1}& a_{m2}& \dots &a_{mn} &b_{m} \end{pmatrix} A=(aij),x=x1x2xn,b=b1b2bm,B=a11a21am1a12a22am2a1na2namnb1b2bm        其中 A \textbf{A} A 称为系数矩阵 x \textbf{x} x 称为未知数矩阵 b \textbf{b} b 称为常数项矩阵 B \textbf{B} B 称为增广矩阵

        7) n n n 个变量 x 1 , x 2 , … , x n x_{1},x_{2},\dots,x_{n} x1,x2,,xn m m m 个变量 y 1 , y 2 , … , y m y_{1},y_{2},\dots,y_{m} y1,y2,,ym 之间的关系式:
{ y 1 = a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n , y 2 = a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n , … y m = a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n \left\{\begin{matrix} y_{1}=a_{11}x_{1}+a_{12}x_{2}+\dots+a_{1n}x_{n}, \\ y_{2}=a_{21}x_{1}+a_{22}x_{2}+\dots+a_{2n}x_{n}, \\ \dots\\ y_{m}=a_{m1}x_{1}+a_{m2}x_{2}+\dots+a_{mn}x_{n} \end{matrix}\right. y1=a11x1+a12x2++a1nxn,y2=a21x1+a22x2++a2nxn,ym=am1x1+am2x2++amnxn        表示一个从变量 x 1 , x 2 , … , x n x_{1},x_{2},\dots,x_{n} x1,x2,,xn 到变量 y 1 , y 2 , … , y m y_{1},y_{2},\dots,y_{m} y1,y2,,ym线性变换。由系数 a i j a_{ij} aij 构成的矩阵 A = ( a i j ) m × n A=(a_{ij})_{m\times n} A=(aij)m×n 称为系数矩阵


3、矩阵运算

        1)矩阵加减法:只有同型矩阵才能相加减,若 C m n = A m n ± B m n C_{mn}=A_{mn}\pm B_{mn} Cmn=Amn±Bmn,则 c i j = a i j ± b i j c_{ij}=a_{ij}\pm b_{ij} cij=aij±bij ,其中 a i j a_{ij} aij 表示矩阵 A A A 中元素,其余类似,下同。

        2)数与矩阵相乘:令 C = λ A C=\lambda A C=λA ,其中 λ \lambda λ为数, A 、 C A、C AC为矩阵,则 c i j = λ × a i j c_{ij}=\lambda \times a_{ij} cij=λ×aij

        3)矩阵与矩阵相乘:设 A = ( a i j ) A=(a_{ij}) A=(aij) 是一个 m × s m\times s m×s 矩阵, B = ( b i j ) B=(b_{ij}) B=(bij) 是一个 s × n s\times n s×n 矩阵,那么规定矩阵 A A A 与矩阵 B B B 的乘积是一个 m × n m\times n m×n 矩阵 C = ( c i j ) C=(c_{ij}) C=(cij) ,其中:
c i j = a i 1 b 1 j + a i 2 b 2 j + ⋯ + a i s b s j = ∑ k = 1 s a i k b k j c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\dots+a_{is}b_{sj}=\sum_{k=1}^{s}a_{ik}b_{kj} cij=ai1b1j+ai2b2j++aisbsj=k=1saikbkj        并把此乘积记作
C = AB . \textbf{C}=\textbf{AB}. C=AB.        需要注意:
                1、矩阵与矩阵的乘法不满足交换律,即 A B ≠ B A AB\ne BA AB=BA
                2、若 A B = O AB=O AB=O 不能推出 A = O A=O A=O B = O B=O B=O

        4)矩阵的转置:把矩阵 A A A 的行换成同序数的列得到一个新矩阵,叫做 A A A转置矩阵,记作 A T A^{T} AT 。矩阵的转置也是一种运算,满足如下规律:
                 (i) ( A T ) T = A (A^{T})^{T}=A (AT)T=A
                 (ii) ( A + B ) T = A T + B T (A+B)^{T}=A^{T}+B^{T} (A+B)T=AT+BT
                 (iii) ( λ A ) T = λ A T (\lambda A)^{T}=\lambda A^{T} (λA)T=λAT
                 (iv) ( A B ) T = B T A T (AB)^{T}=B^{T}A^{T} (AB)T=BTAT
        若 n n n 阶方阵 A A A 满足 A T = A A^{T}=A AT=A,那么 A A A 称为对称矩阵,简称对称阵

        5)方阵的行列式:由 n n n 阶方阵 A A A 的元素所构成的行列式,称为方阵 A A A 的行列式,记作 d e t A det A detA ∣ A ∣ |A| A 。由 A A A 确定 ∣ A ∣ |A| A 的这个运算满足下述运算规律(设 A 、 B A、B AB n n n 阶方阵, λ \lambda λ 为数):
                 (i) ∣ A T ∣ = ∣ A ∣ |A^{T}|=|A| AT=A
                 (ii) ∣ λ A ∣ = λ n ∣ A ∣ |\lambda A|=\lambda ^{n}|A| λA=λnA
                 (iii) ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=AB

        6)伴随矩阵:行列式 ∣ A ∣ |A| A 的各个元素的代数余子式 A i j A_{ij} Aij 所构成的如下的矩阵:
A ∗ = ( A 11 A 21 … A n 1 A 12 A 22 … A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n … A n n ) A^{*}=\begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix} A=A11A12A1nA21A22A2nAn1An2Ann        称为矩阵 A A A伴随矩阵,简称伴随阵


4、逆矩阵

        对于 n n n 阶矩阵 A A A ,如果有一个 n n n 阶矩阵 B B B ,使 A B = B A = E AB=BA=E AB=BA=E ,则说矩阵 A A A 是可逆的,并把矩阵 B B B 称为 A A A逆矩阵,简称逆阵。如果矩阵 A A A 可逆,那么它的逆矩阵是唯一的,并记作 A − 1 A^{-1} A1 。逆矩阵有如下相关定理:
        1)若矩阵可逆,则 ∣ A ∣ ≠ 0 |A|\ne0 A=0
        2)若 ∣ A ∣ ≠ 0 |A|\ne0 A=0,则矩阵 A A A 可逆,且 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^{*} A1=A1A,其中 A ∗ A^{*} A 为矩阵 A A A 的伴随矩阵。
        3)当 ∣ A ∣ = 0 |A|=0 A=0 时, A A A 称为奇异矩阵,否则称非奇异矩阵


5、矩阵的初等变换

        定义1:下面三种变换称为矩阵的初等行变换:
                (i) 对换两行(对换 i , j i,j i,j 两行,记作 r i ⟷ r j r_{i}\longleftrightarrow r_{j} rirj);
                (ii) 以数 k ≠ 0 k\ne 0 k=0 乘某一行中的所有元(第 i i i 行乘 k k k ,记作 r i × k r_{i}\times k ri×k );
                (iii) 把某一行所有元的 k k k 倍加到另一行对应元上去(第 j j j 行的 k k k 倍加到第 i i i 行上,记作 r i + k r j r_{i}+kr_{j} ri+krj )。
        把定义中的“行”换成“列”,即得到矩阵的初等列变换的定义(所用记号是把 “ r r r” 换成 “ c c c”)。矩阵的初等行变换和初等列变换,统称初等变换。
        如果矩阵 A A A 经有限次初等行变换变成矩阵 B B B 就称矩阵 A A A 和矩阵 B B B 行等价,记作 A ∼ r B A\overset{r}{\sim}B ArB ;如果矩阵 A A A 经有限次初等列变换变成矩阵 B B B 就称矩阵 A A A 和矩阵 B B B 列等价,记作 A ∼ c B A\overset{c}{\sim}B AcB ;如果矩阵 A A A 经有限次初等变换变成矩阵 B B B 就称矩阵 A A A 和矩阵 B B B 等价,记作 A ∼ B A\sim B AB

        定义2:非零矩阵若满足:
                (i) 非零行在零行上面;
                (ii) 非零行的首非零元所在列在上一行(如果存在的话)的首非零元所在列的右面。
        则称此矩阵为行阶梯形矩阵。进一步,若 A A A 是行阶梯形矩阵,并且还满足:
                (i) 非零行的首非零元为1;
                (ii) 首非零元所在的列的其他元均为0。
        则称 A A A行最简形矩阵。对行最简形矩阵再施以初等列变换,可变成一种形状更简单的矩阵 F F F F F F 的左上角是一个单位矩阵,其余元全为0,称 F F F标准形。例如:
B 1 = ( 1 2 − 2 1 4 0 1 − 1 1 0 0 0 0 1 − 3 0 0 0 0 0 ) , B 2 = ( 1 0 − 1 0 4 0 1 − 1 0 3 0 0 0 1 − 3 0 0 0 0 0 ) , B 3 = ( 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 ) B1=\begin{pmatrix} 1 & 2 & -2 & 1 & 4 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},B2=\begin{pmatrix} 1 & 0 & -1 & 0 & 4 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},B3=\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} B1=10002100210011104030,B2=10000100110000104330,B3=10000100001000000000        其中B1、B2、B3都是行阶梯形矩阵,B2、B3是行最简形矩阵,B3是标准形。

        定义3:由单位矩阵 E E E 经过一次初等变换得到的矩阵称为初等矩阵。三种初等变换对应有三种初等矩阵。

        相关定理与性质:
        1)对于 m × n m\times n m×n 矩阵 A A A ,总可经过初等变换把它化为标准形。

        2)设 A A A B B B m × n m\times n m×n 矩阵,那么
                (i) A ∼ r B A\overset{r}{\sim}B ArB 的充分必要条件是存在 m m m 阶可逆矩阵 P P P ,使 P A = B PA=B PA=B
                (i) A ∼ c B A\overset{c}{\sim}B AcB 的充分必要条件是存在 n n n 阶可逆矩阵 Q Q Q ,使 A Q = B AQ=B AQ=B
                (i) A ∼ B A\sim B AB 的充分必要条件是存在 m m m 阶可逆矩阵 P P P n n n 阶可逆矩阵 Q Q Q,使 P A Q = B PAQ=B PAQ=B

        3)设 A A A 是一个 m × n m\times n m×n 矩阵,对 A A A 施行一次初等行变换,相当于在 A A A 的左边乘相应的 m m m 阶初等矩阵;对 A A A 施行一次初等列变换,相当于在 A A A 的右边乘相应的 n n n 阶初等矩阵。

        4)方阵 A A A 可逆的充分必要条件是 A ∼ r E A\overset{r}{\sim}E ArE。因此,使用初等行变换把 ( A , E ) (A,E) (A,E) 化成 ( F , P ) (F,P) (F,P) ,其中 F F F A A A 的行最简形矩阵。若 F = E F=E F=E ,则 P = A − 1 P=A^{-1} P=A1


6、矩阵的秩

        定义1:在 m × n m\times n m×n 矩阵 A A A 中,任取 k k k 行与 k k k 列( k ≤ m , k ≤ n k\le m,k\le n km,kn ),位于这些行列交叉处的 k 2 k^{2} k2 个元素,不改变它们在 A A A 所处的位置次序而得到的 k k k 阶行列式,称为矩阵 A A A k k k 阶子式。
        定义2:若矩阵 A A A 中有一个不等于0的 r r r 阶子式 D D D ,且所有 r + 1 r+1 r+1 阶子式(如果存在的话)全等于0,那么 D D D 称为矩阵 A A A最高阶非零子式,数 r r r 称为矩阵 A A A,记作 R ( A ) R(A) R(A) ,并规定零矩阵的秩等于0。
        定义3:可逆矩阵的秩等于矩阵的阶数因此又称为满秩矩阵,不可逆矩阵的秩小于矩阵的阶数因此又称为降秩矩阵

        求秩方法:将矩阵化为行阶梯形矩阵后,它的秩就等于非零行的行数。

        矩阵的秩的性质:
                 - 0 ≤ R ( A m × n ) ≤ m i n { m , n } 0\le R(A_{m\times n})\le min\left \{ m,n \right \} 0R(Am×n)min{m,n}
                 - R ( A T ) = R ( A ) R(A^{T})=R(A) R(AT)=R(A)
                 - 若 A ∼ B A\sim B AB,则 R ( A ) = R ( B ) R(A)=R(B) R(A)=R(B)
                 - 若 P 、 Q P、Q PQ 可逆,则 R ( P A Q ) = R ( A ) R(PAQ)=R(A) R(PAQ)=R(A)
                 - m a x { R ( A ) , R ( B ) } ≤ R ( A , B ) ≤ R ( A ) + R ( B ) max\left \{ R(A),R(B) \right \}\le R(A,B)\le R(A)+R(B) max{R(A),R(B)}R(A,B)R(A)+R(B)
                 - R ( A + B ) ≤ R ( A ) + R ( B ) R(A+B)\le R(A)+R(B) R(A+B)R(A)+R(B)
                 - R ( A B ) ≤ m i n { R ( A ) , R ( B ) } R(AB)\le min\left \{ R(A),R(B) \right \} R(AB)min{R(A),R(B)}
                 - 若 A m × n B n × l = O A_{m\times n}B_{n\times l}=O Am×nBn×l=O ,则 R ( A ) + R ( B ) ≤ n R(A)+R(B)\le n R(A)+R(B)n
                 - 设 A B = O AB=O AB=O ,若 A A A 为列满秩矩阵,则 B = O B=O B=O


7、克拉默法则

        克拉默法则用于求解由 n n n n n n 元线性方程组成的方程组。如果线性方程组的系数矩阵 A A A 的行列式不为 0,则方程组有唯一解:
x 1 = ∣ A 1 ∣ ∣ A ∣ , x 2 = ∣ A 2 ∣ ∣ A ∣ , … , x n = ∣ A n ∣ ∣ A ∣ x_{1}=\frac{|A_{1}|}{|A|},x_{2}=\frac{|A_{2}|}{|A|},\dots,x_{n}=\frac{|A_{n}|}{|A|} x1=AA1,x2=AA2,,xn=AAn        其中 A j A_{j} Aj 是把系数矩阵 A A A 中第 j j j 列的元素用常数项矩阵代替后所得到的 n n n 阶矩阵。


8、线性方程组的解

         n n n 元线性方程组 A x = b Ax=b Ax=b
        (i) 无解的充分必要条件是 R ( A ) < R ( A , b ) R(A)<R(A,b) R(A)<R(A,b) ;
        (ii) 有唯一解的充分必要条件是 R ( A ) = R ( A , b ) = n R(A)=R(A,b)=n R(A)=R(A,b)=n ;
        (iii) 有无限多解的充分必要条件是 R ( A ) = R ( A , b ) < n R(A)=R(A,b)<n R(A)=R(A,b)<n

        简单理解:设 R ( A ) = r , B = ( A , b ) , B ∼ R(A)=r,B=(A,b),\overset{\sim}{B} R(A)=r,B=(A,b),B B B B 的行最简形矩阵。
        若 R ( A ) < R ( B ) R(A)<R(B) R(A)<R(B) ,则 B ∼ \overset{\sim}{B} B 中第 r + 1 r+1 r+1 行的系数矩阵部分全为0,于是 B ∼ \overset{\sim}{B} B 的第 r + 1 r+1 r+1 行对应矛盾方程 0 = 1 0=1 0=1 ,故方程无解。
        若 R ( A ) = R ( B ) = n R(A)=R(B)=n R(A)=R(B)=n ,则 B ∼ \overset{\sim}{B} B 中有 n n n 个非 0 行,对应 n n n 个未知数逐步递减至 1 的方程组,故方程有唯一解。
        若 R ( A ) = R ( B ) < n R(A)=R(B)<n R(A)=R(B)<n ,则 B ∼ \overset{\sim}{B} B 中有 r r r 个非 0 行,对应 r r r 个未知数逐步递减至 1 的方程组,剩余 n − r n-r nr 个未知数无法确定,故方程有无限多解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值