1、矩阵的定义
由 m × n m\times n m×n 个数 a i j a_{ij} aij 排成的 m m m 行 n n n 列的数表称为 m m m 行 n n n 列矩阵,简称 m × n m\times n m×n 矩阵。
2、常用矩阵
1)若行数与列数都等于 n n n 的矩阵称为 n n n 阶矩阵或 n n n 阶方阵。
2)只有一行的矩阵称为行矩阵或行向量,只有一列的矩阵称为列矩阵或列向量。
3)若两个矩阵的行数相等、列数也相等时,就称它们是同型矩阵。
4)元素都是 0 的矩阵称为零矩阵,记为 O O O 。
5)若 n n n 阶方阵除对角线外的元素都是0,则称这种方阵为对角矩阵。特殊的,如果对角矩阵的对角线元素都是1,则称为单位矩阵,简称单位阵,记为 E E E 。
6)对于常数项不全为 0 的
n
n
n 元非齐次线性方程组:
{
a
11
x
1
+
a
12
x
2
+
⋯
+
a
1
n
x
n
=
b
1
a
21
x
1
+
a
22
x
2
+
⋯
+
a
2
n
x
n
=
b
2
…
a
m
1
x
1
+
a
m
2
x
2
+
⋯
+
a
m
n
x
n
=
b
m
\left\{\begin{matrix} a_{11}x_{1}+a_{12}x_{2}+\dots +a_{1n}x_{n}=b_{1} \\ a_{21}x_{1}+a_{22}x_{2}+\dots +a_{2n}x_{n}=b_{2} \\ \dots \\ a_{m1}x_{1}+a_{m2}x_{2}+\dots +a_{mn}x_{n}=b_{m} \end{matrix}\right.
⎩⎪⎪⎨⎪⎪⎧a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2…am1x1+am2x2+⋯+amnxn=bm 有如下常用矩阵:
A
=
(
a
i
j
)
,
x
=
(
x
1
x
2
⋮
x
n
)
,
b
=
(
b
1
b
2
⋮
b
m
)
,
B
=
(
a
11
a
12
…
a
1
n
b
1
a
21
a
22
…
a
2
n
b
2
⋮
⋮
⋮
⋮
a
m
1
a
m
2
…
a
m
n
b
m
)
\textbf{A}=(a_{ij}),\textbf{x}=\begin{pmatrix}x_{1}\\x_{2}\\\vdots \\x_{n}\end{pmatrix},\textbf{b}=\begin{pmatrix}b_{1}\\b_{2}\\\vdots \\b_{m}\end{pmatrix},\textbf{B}=\begin{pmatrix}a_{11}& a_{12}& \dots &a_{1n} &b_{1} \\a_{21}& a_{22}& \dots &a_{2n} &b_{2} \\\vdots & \vdots & &\vdots &\vdots\\a_{m1}& a_{m2}& \dots &a_{mn} &b_{m} \end{pmatrix}
A=(aij),x=⎝⎜⎜⎜⎛x1x2⋮xn⎠⎟⎟⎟⎞,b=⎝⎜⎜⎜⎛b1b2⋮bm⎠⎟⎟⎟⎞,B=⎝⎜⎜⎜⎛a11a21⋮am1a12a22⋮am2………a1na2n⋮amnb1b2⋮bm⎠⎟⎟⎟⎞ 其中
A
\textbf{A}
A 称为系数矩阵,
x
\textbf{x}
x 称为未知数矩阵,
b
\textbf{b}
b 称为常数项矩阵,
B
\textbf{B}
B 称为增广矩阵。
7)
n
n
n 个变量
x
1
,
x
2
,
…
,
x
n
x_{1},x_{2},\dots,x_{n}
x1,x2,…,xn 与
m
m
m 个变量
y
1
,
y
2
,
…
,
y
m
y_{1},y_{2},\dots,y_{m}
y1,y2,…,ym 之间的关系式:
{
y
1
=
a
11
x
1
+
a
12
x
2
+
⋯
+
a
1
n
x
n
,
y
2
=
a
21
x
1
+
a
22
x
2
+
⋯
+
a
2
n
x
n
,
…
y
m
=
a
m
1
x
1
+
a
m
2
x
2
+
⋯
+
a
m
n
x
n
\left\{\begin{matrix} y_{1}=a_{11}x_{1}+a_{12}x_{2}+\dots+a_{1n}x_{n}, \\ y_{2}=a_{21}x_{1}+a_{22}x_{2}+\dots+a_{2n}x_{n}, \\ \dots\\ y_{m}=a_{m1}x_{1}+a_{m2}x_{2}+\dots+a_{mn}x_{n} \end{matrix}\right.
⎩⎪⎪⎨⎪⎪⎧y1=a11x1+a12x2+⋯+a1nxn,y2=a21x1+a22x2+⋯+a2nxn,…ym=am1x1+am2x2+⋯+amnxn 表示一个从变量
x
1
,
x
2
,
…
,
x
n
x_{1},x_{2},\dots,x_{n}
x1,x2,…,xn 到变量
y
1
,
y
2
,
…
,
y
m
y_{1},y_{2},\dots,y_{m}
y1,y2,…,ym 的线性变换。由系数
a
i
j
a_{ij}
aij 构成的矩阵
A
=
(
a
i
j
)
m
×
n
A=(a_{ij})_{m\times n}
A=(aij)m×n 称为系数矩阵。
3、矩阵运算
1)矩阵加减法:只有同型矩阵才能相加减,若 C m n = A m n ± B m n C_{mn}=A_{mn}\pm B_{mn} Cmn=Amn±Bmn,则 c i j = a i j ± b i j c_{ij}=a_{ij}\pm b_{ij} cij=aij±bij ,其中 a i j a_{ij} aij 表示矩阵 A A A 中元素,其余类似,下同。
2)数与矩阵相乘:令 C = λ A C=\lambda A C=λA ,其中 λ \lambda λ为数, A 、 C A、C A、C为矩阵,则 c i j = λ × a i j c_{ij}=\lambda \times a_{ij} cij=λ×aij 。
3)矩阵与矩阵相乘:设
A
=
(
a
i
j
)
A=(a_{ij})
A=(aij) 是一个
m
×
s
m\times s
m×s 矩阵,
B
=
(
b
i
j
)
B=(b_{ij})
B=(bij) 是一个
s
×
n
s\times n
s×n 矩阵,那么规定矩阵
A
A
A 与矩阵
B
B
B 的乘积是一个
m
×
n
m\times n
m×n 矩阵
C
=
(
c
i
j
)
C=(c_{ij})
C=(cij) ,其中:
c
i
j
=
a
i
1
b
1
j
+
a
i
2
b
2
j
+
⋯
+
a
i
s
b
s
j
=
∑
k
=
1
s
a
i
k
b
k
j
c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\dots+a_{is}b_{sj}=\sum_{k=1}^{s}a_{ik}b_{kj}
cij=ai1b1j+ai2b2j+⋯+aisbsj=k=1∑saikbkj 并把此乘积记作
C
=
AB
.
\textbf{C}=\textbf{AB}.
C=AB. 需要注意:
1、矩阵与矩阵的乘法不满足交换律,即
A
B
≠
B
A
AB\ne BA
AB=BA。
2、若
A
B
=
O
AB=O
AB=O 不能推出
A
=
O
A=O
A=O 或
B
=
O
B=O
B=O 。
4)矩阵的转置:把矩阵
A
A
A 的行换成同序数的列得到一个新矩阵,叫做
A
A
A 的转置矩阵,记作
A
T
A^{T}
AT 。矩阵的转置也是一种运算,满足如下规律:
(i)
(
A
T
)
T
=
A
(A^{T})^{T}=A
(AT)T=A
(ii)
(
A
+
B
)
T
=
A
T
+
B
T
(A+B)^{T}=A^{T}+B^{T}
(A+B)T=AT+BT
(iii)
(
λ
A
)
T
=
λ
A
T
(\lambda A)^{T}=\lambda A^{T}
(λA)T=λAT
(iv)
(
A
B
)
T
=
B
T
A
T
(AB)^{T}=B^{T}A^{T}
(AB)T=BTAT
若
n
n
n 阶方阵
A
A
A 满足
A
T
=
A
A^{T}=A
AT=A,那么
A
A
A 称为对称矩阵,简称对称阵。
5)方阵的行列式:由
n
n
n 阶方阵
A
A
A 的元素所构成的行列式,称为方阵
A
A
A 的行列式,记作
d
e
t
A
det A
detA 或
∣
A
∣
|A|
∣A∣ 。由
A
A
A 确定
∣
A
∣
|A|
∣A∣ 的这个运算满足下述运算规律(设
A
、
B
A、B
A、B 为
n
n
n 阶方阵,
λ
\lambda
λ 为数):
(i)
∣
A
T
∣
=
∣
A
∣
|A^{T}|=|A|
∣AT∣=∣A∣
(ii)
∣
λ
A
∣
=
λ
n
∣
A
∣
|\lambda A|=\lambda ^{n}|A|
∣λA∣=λn∣A∣
(iii)
∣
A
B
∣
=
∣
A
∣
∣
B
∣
|AB|=|A||B|
∣AB∣=∣A∣∣B∣
6)伴随矩阵:行列式
∣
A
∣
|A|
∣A∣ 的各个元素的代数余子式
A
i
j
A_{ij}
Aij 所构成的如下的矩阵:
A
∗
=
(
A
11
A
21
…
A
n
1
A
12
A
22
…
A
n
2
⋮
⋮
⋮
A
1
n
A
2
n
…
A
n
n
)
A^{*}=\begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}
A∗=⎝⎜⎜⎜⎛A11A12⋮A1nA21A22⋮A2n………An1An2⋮Ann⎠⎟⎟⎟⎞ 称为矩阵
A
A
A 的伴随矩阵,简称伴随阵。
4、逆矩阵
对于
n
n
n 阶矩阵
A
A
A ,如果有一个
n
n
n 阶矩阵
B
B
B ,使
A
B
=
B
A
=
E
AB=BA=E
AB=BA=E ,则说矩阵
A
A
A 是可逆的,并把矩阵
B
B
B 称为
A
A
A 的逆矩阵,简称逆阵。如果矩阵
A
A
A 可逆,那么它的逆矩阵是唯一的,并记作
A
−
1
A^{-1}
A−1 。逆矩阵有如下相关定理:
1)若矩阵可逆,则
∣
A
∣
≠
0
|A|\ne0
∣A∣=0。
2)若
∣
A
∣
≠
0
|A|\ne0
∣A∣=0,则矩阵
A
A
A 可逆,且
A
−
1
=
1
∣
A
∣
A
∗
A^{-1}=\frac{1}{|A|}A^{*}
A−1=∣A∣1A∗,其中
A
∗
A^{*}
A∗ 为矩阵
A
A
A 的伴随矩阵。
3)当
∣
A
∣
=
0
|A|=0
∣A∣=0 时,
A
A
A 称为奇异矩阵,否则称非奇异矩阵。
5、矩阵的初等变换
定义1:下面三种变换称为矩阵的初等行变换:
(i) 对换两行(对换
i
,
j
i,j
i,j 两行,记作
r
i
⟷
r
j
r_{i}\longleftrightarrow r_{j}
ri⟷rj);
(ii) 以数
k
≠
0
k\ne 0
k=0 乘某一行中的所有元(第
i
i
i 行乘
k
k
k ,记作
r
i
×
k
r_{i}\times k
ri×k );
(iii) 把某一行所有元的
k
k
k 倍加到另一行对应元上去(第
j
j
j 行的
k
k
k 倍加到第
i
i
i 行上,记作
r
i
+
k
r
j
r_{i}+kr_{j}
ri+krj )。
把定义中的“行”换成“列”,即得到矩阵的初等列变换的定义(所用记号是把 “
r
r
r” 换成 “
c
c
c”)。矩阵的初等行变换和初等列变换,统称初等变换。
如果矩阵
A
A
A 经有限次初等行变换变成矩阵
B
B
B 就称矩阵
A
A
A 和矩阵
B
B
B 行等价,记作
A
∼
r
B
A\overset{r}{\sim}B
A∼rB ;如果矩阵
A
A
A 经有限次初等列变换变成矩阵
B
B
B 就称矩阵
A
A
A 和矩阵
B
B
B 列等价,记作
A
∼
c
B
A\overset{c}{\sim}B
A∼cB ;如果矩阵
A
A
A 经有限次初等变换变成矩阵
B
B
B 就称矩阵
A
A
A 和矩阵
B
B
B 等价,记作
A
∼
B
A\sim B
A∼B 。
定义2:非零矩阵若满足:
(i) 非零行在零行上面;
(ii) 非零行的首非零元所在列在上一行(如果存在的话)的首非零元所在列的右面。
则称此矩阵为行阶梯形矩阵。进一步,若
A
A
A 是行阶梯形矩阵,并且还满足:
(i) 非零行的首非零元为1;
(ii) 首非零元所在的列的其他元均为0。
则称
A
A
A 为行最简形矩阵。对行最简形矩阵再施以初等列变换,可变成一种形状更简单的矩阵
F
F
F ,
F
F
F 的左上角是一个单位矩阵,其余元全为0,称
F
F
F 为标准形。例如:
B
1
=
(
1
2
−
2
1
4
0
1
−
1
1
0
0
0
0
1
−
3
0
0
0
0
0
)
,
B
2
=
(
1
0
−
1
0
4
0
1
−
1
0
3
0
0
0
1
−
3
0
0
0
0
0
)
,
B
3
=
(
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
)
B1=\begin{pmatrix} 1 & 2 & -2 & 1 & 4 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},B2=\begin{pmatrix} 1 & 0 & -1 & 0 & 4 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},B3=\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}
B1=⎝⎜⎜⎛10002100−2−100111040−30⎠⎟⎟⎞,B2=⎝⎜⎜⎛10000100−1−100001043−30⎠⎟⎟⎞,B3=⎝⎜⎜⎛10000100001000000000⎠⎟⎟⎞ 其中B1、B2、B3都是行阶梯形矩阵,B2、B3是行最简形矩阵,B3是标准形。
定义3:由单位矩阵 E E E 经过一次初等变换得到的矩阵称为初等矩阵。三种初等变换对应有三种初等矩阵。
相关定理与性质:
1)对于
m
×
n
m\times n
m×n 矩阵
A
A
A ,总可经过初等变换把它化为标准形。
2)设
A
A
A 与
B
B
B 为
m
×
n
m\times n
m×n 矩阵,那么
(i)
A
∼
r
B
A\overset{r}{\sim}B
A∼rB 的充分必要条件是存在
m
m
m 阶可逆矩阵
P
P
P ,使
P
A
=
B
PA=B
PA=B ;
(i)
A
∼
c
B
A\overset{c}{\sim}B
A∼cB 的充分必要条件是存在
n
n
n 阶可逆矩阵
Q
Q
Q ,使
A
Q
=
B
AQ=B
AQ=B ;
(i)
A
∼
B
A\sim B
A∼B 的充分必要条件是存在
m
m
m 阶可逆矩阵
P
P
P 及
n
n
n 阶可逆矩阵
Q
Q
Q,使
P
A
Q
=
B
PAQ=B
PAQ=B 。
3)设 A A A 是一个 m × n m\times n m×n 矩阵,对 A A A 施行一次初等行变换,相当于在 A A A 的左边乘相应的 m m m 阶初等矩阵;对 A A A 施行一次初等列变换,相当于在 A A A 的右边乘相应的 n n n 阶初等矩阵。
4)方阵 A A A 可逆的充分必要条件是 A ∼ r E A\overset{r}{\sim}E A∼rE。因此,使用初等行变换把 ( A , E ) (A,E) (A,E) 化成 ( F , P ) (F,P) (F,P) ,其中 F F F 为 A A A 的行最简形矩阵。若 F = E F=E F=E ,则 P = A − 1 P=A^{-1} P=A−1 。
6、矩阵的秩
定义1:在
m
×
n
m\times n
m×n 矩阵
A
A
A 中,任取
k
k
k 行与
k
k
k 列(
k
≤
m
,
k
≤
n
k\le m,k\le n
k≤m,k≤n ),位于这些行列交叉处的
k
2
k^{2}
k2 个元素,不改变它们在
A
A
A 所处的位置次序而得到的
k
k
k 阶行列式,称为矩阵
A
A
A 的
k
k
k 阶子式。
定义2:若矩阵
A
A
A 中有一个不等于0的
r
r
r 阶子式
D
D
D ,且所有
r
+
1
r+1
r+1 阶子式(如果存在的话)全等于0,那么
D
D
D 称为矩阵
A
A
A 的最高阶非零子式,数
r
r
r 称为矩阵
A
A
A 的秩,记作
R
(
A
)
R(A)
R(A) ,并规定零矩阵的秩等于0。
定义3:可逆矩阵的秩等于矩阵的阶数因此又称为满秩矩阵,不可逆矩阵的秩小于矩阵的阶数因此又称为降秩矩阵。
求秩方法:将矩阵化为行阶梯形矩阵后,它的秩就等于非零行的行数。
矩阵的秩的性质:
-
0
≤
R
(
A
m
×
n
)
≤
m
i
n
{
m
,
n
}
0\le R(A_{m\times n})\le min\left \{ m,n \right \}
0≤R(Am×n)≤min{m,n}
-
R
(
A
T
)
=
R
(
A
)
R(A^{T})=R(A)
R(AT)=R(A)
- 若
A
∼
B
A\sim B
A∼B,则
R
(
A
)
=
R
(
B
)
R(A)=R(B)
R(A)=R(B)
- 若
P
、
Q
P、Q
P、Q 可逆,则
R
(
P
A
Q
)
=
R
(
A
)
R(PAQ)=R(A)
R(PAQ)=R(A)
-
m
a
x
{
R
(
A
)
,
R
(
B
)
}
≤
R
(
A
,
B
)
≤
R
(
A
)
+
R
(
B
)
max\left \{ R(A),R(B) \right \}\le R(A,B)\le R(A)+R(B)
max{R(A),R(B)}≤R(A,B)≤R(A)+R(B)
-
R
(
A
+
B
)
≤
R
(
A
)
+
R
(
B
)
R(A+B)\le R(A)+R(B)
R(A+B)≤R(A)+R(B)
-
R
(
A
B
)
≤
m
i
n
{
R
(
A
)
,
R
(
B
)
}
R(AB)\le min\left \{ R(A),R(B) \right \}
R(AB)≤min{R(A),R(B)}
- 若
A
m
×
n
B
n
×
l
=
O
A_{m\times n}B_{n\times l}=O
Am×nBn×l=O ,则
R
(
A
)
+
R
(
B
)
≤
n
R(A)+R(B)\le n
R(A)+R(B)≤n
- 设
A
B
=
O
AB=O
AB=O ,若
A
A
A 为列满秩矩阵,则
B
=
O
B=O
B=O
7、克拉默法则
克拉默法则用于求解由
n
n
n 个
n
n
n 元线性方程组成的方程组。如果线性方程组的系数矩阵
A
A
A 的行列式不为 0,则方程组有唯一解:
x
1
=
∣
A
1
∣
∣
A
∣
,
x
2
=
∣
A
2
∣
∣
A
∣
,
…
,
x
n
=
∣
A
n
∣
∣
A
∣
x_{1}=\frac{|A_{1}|}{|A|},x_{2}=\frac{|A_{2}|}{|A|},\dots,x_{n}=\frac{|A_{n}|}{|A|}
x1=∣A∣∣A1∣,x2=∣A∣∣A2∣,…,xn=∣A∣∣An∣ 其中
A
j
A_{j}
Aj 是把系数矩阵
A
A
A 中第
j
j
j 列的元素用常数项矩阵代替后所得到的
n
n
n 阶矩阵。
8、线性方程组的解
n
n
n 元线性方程组
A
x
=
b
Ax=b
Ax=b
(i) 无解的充分必要条件是
R
(
A
)
<
R
(
A
,
b
)
R(A)<R(A,b)
R(A)<R(A,b) ;
(ii) 有唯一解的充分必要条件是
R
(
A
)
=
R
(
A
,
b
)
=
n
R(A)=R(A,b)=n
R(A)=R(A,b)=n ;
(iii) 有无限多解的充分必要条件是
R
(
A
)
=
R
(
A
,
b
)
<
n
R(A)=R(A,b)<n
R(A)=R(A,b)<n 。
简单理解:设
R
(
A
)
=
r
,
B
=
(
A
,
b
)
,
B
∼
R(A)=r,B=(A,b),\overset{\sim}{B}
R(A)=r,B=(A,b),B∼ 为
B
B
B 的行最简形矩阵。
若
R
(
A
)
<
R
(
B
)
R(A)<R(B)
R(A)<R(B) ,则
B
∼
\overset{\sim}{B}
B∼ 中第
r
+
1
r+1
r+1 行的系数矩阵部分全为0,于是
B
∼
\overset{\sim}{B}
B∼ 的第
r
+
1
r+1
r+1 行对应矛盾方程
0
=
1
0=1
0=1 ,故方程无解。
若
R
(
A
)
=
R
(
B
)
=
n
R(A)=R(B)=n
R(A)=R(B)=n ,则
B
∼
\overset{\sim}{B}
B∼ 中有
n
n
n 个非 0 行,对应
n
n
n 个未知数逐步递减至 1 的方程组,故方程有唯一解。
若
R
(
A
)
=
R
(
B
)
<
n
R(A)=R(B)<n
R(A)=R(B)<n ,则
B
∼
\overset{\sim}{B}
B∼ 中有
r
r
r 个非 0 行,对应
r
r
r 个未知数逐步递减至 1 的方程组,剩余
n
−
r
n-r
n−r 个未知数无法确定,故方程有无限多解。