756 题目:
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。
提示:
2 <= cost.length <= 1000
0 <= cost[i] <= 999
题解1 dp
public int minCostClimbingStairs(int[] cost) {
int n=cost.length;
int dp[]=new int [n+1];
dp[0]=dp[1]=0;
for (int i = 2; i <= n; i++) {
dp[i]=Math.min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]);
}
return dp[n];
}
时间复杂度和空间复杂度都是 O(n)O(n)
看了题解有优化 记录一下还没理解
题解2 动态数组
public int minCostClimbingStairss(int[] cost) {
int n=cost.length;
int pre=0,cur=0;
for (int i = 2; i <= n; i++) {
int next=Math.min(cur+cost[i-1], pre+cost[i-2]);
pre=cur;
cur=next;
}
return cur;
}