Description
You are given several axis-aligned rectangles. Compute the sum of the area of the regions that are
covered by an odd number of rectangles.
Input
The first line of input contains a single integer
n
(
1
≤
n
≤
1
e
5
)
n (1 ≤ n ≤ 1e5)
n(1≤n≤1e5), representing the number of
rectangles.Each of the next n lines contains four space-separated integers x1, y1, x2, and y2, each between 0
and
1
e
9
1e9
1e9, describing the coordinates of a rectangle.
Output
Print, on one line, the total area covered by an odd number of rectangles as an exact integer
Examples
Input
2
0 0 4 4
1 1 3 3
Output
12
Input
4
0 0 10 10
1 1 11 11
2 2 12 12
3 3 13 13
Output
72
Solution
和一般的扫描线不同,这题要求被奇数个矩形覆盖的区域的面积。
我们可以利用线段树实现区间取反
每来一条扫描线就把该区间取反,并维护权值为1的区间总长度,同时统计答案
Code
// #include <bits/stdc++.h>
#include <cstdio>
#include <iostream>
#include <vector>
#include <cstring>
#include <algorithm>
#define ls rt << 1
#define rs rt << 1 | 1
using namespace std;
typedef long long ll;
const int MX = 4e5 + 7;
int n,X[MX<<1];
struct Scanline{
int l,r,h;
inline bool operator<(const Scanline&it) const{
return h < it.h;
}
}line[MX<<1];
struct SegTree{
int l,r,len,lazy;
}t[MX << 3];
void build(int rt,int l,int r){
t[rt].l = l, t[rt].r = r;
t[rt].lazy = t[rt].len = 0;
if(l == r) return ;
int mid = (l + r) >> 1;
build(ls,l,mid);build(rs,mid+1,r);
}
void rev(int rt){
int l = t[rt].l, r = t[rt].r;
int len = X[r + 1] - X[l];
t[rt].len = len - t[rt].len;
}
void push_down(int rt){
if(t[rt].lazy){
rev(ls);rev(rs);
t[ls].lazy ^= 1;t[rs].lazy ^= 1;
t[rt].lazy = 0;
}
}
void push_up(int rt){
t[rt].len = t[ls].len + t[rs].len;
}
void update(int rt,int L,int R){
int l = t[rt].l, r = t[rt].r;
if(R <= X[l] || L >= X[r+1]) return ;
if((L <= X[l] && X[r + 1] <= R) || (l == r)){
rev(rt);
t[rt].lazy ^= 1;
return ;
}
push_down(rt);
int mid = (l + r) >> 1;
if(L < X[mid+1]) update(ls,L,R);
if(R > X[mid+1]) update(rs,L,R);
push_up(rt);
}
int main(){
scanf("%d",&n);
for(int i = 1;i <= n;++i){
int x1,y1,x2,y2;scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
X[i * 2 - 1] = x1, X[i * 2] = x2;
line[i * 2 - 1] = (Scanline) {x1,x2,y1};
line[i * 2] = (Scanline) {x1,x2,y2};
}
n <<= 1;
sort(X + 1,X + 1 + n);
sort(line + 1,line + 1 + n);
int tot = unique(X + 1,X + 1 + n) - X - 1;
build(1,1,tot - 1);
ll res = 0;
for(int i = 1;i < n;++i){
update(1,line[i].l,line[i].r);
res += 1ll * (line[i+1].h - line[i].h) * t[1].len;
}
printf("%lld\n", res);
}