【论文阅读】AU检测《Learning Representations for Facial Actions from Unlabeled Videos》

论文提出了一种名为Twin-cycle Autoencoder (TAE)的方法,用于从大量未标记视频中学习面部动作的区分性表示。TAE通过学习面部图像间的像素位移来捕捉面部动作,同时解耦面部动作和头部运动的影响。通过自监督学习,TAE在无需手动标注的情况下,实现了与现有AU检测方法相当的精度,并通过实验验证了其在解耦这两种运动方面的能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

面部动作通常被编码为基于解剖学的动作单元(AUs),标记这些动作单元需要专业知识。为了缓解标签需求,论文建议利用大量的未标签视频,通过所提出的Twin-cycle Autoencoder(TAE) 来学习面部动作的区别表示。TAE的提出基于面部动作是嵌入在视频中两个连续的面部图像(在下文中,称为“源”和“目标)”之间的像素位移中的。因此,学习面部动作的表征可以通过学习位移的表征来实现。然而,面部动作引起的位移与头部动作引起的位移是纠缠在一起的。
TAE便是训练来解开这两种运动的,即当面部动作或头部姿态发生变化时,以重建目标图像为目的,通过评估合成图像的质量来实现。在对AU检测的实验中表明,TAE可以达到与现有的其他AU检测方法(包括一些有监督的方法)相当的检测精度,从而验证了TAE学习的表征的判别能力。通过可视化所生成的图像,定性和定量地分析人脸图像恢复结果,验证了TAE对动作诱发运动和姿态诱发运动的解耦能力。

介绍

为减轻对充分和准确注释的需求,论文利用几乎无限数量的无标签视频,用自监督方式学习面部动作的区别表示。考虑到面部动作表现为面部内部的局部动作,易于检测而无需人工标注,由此,论文提出用动作作为学习面部运动表示的监督信号。然而,检测到的动作可能是由面部运动和头部运动共同引起的。在某些情况下,特别是在不受控制的情况下,头部运动是运动的主要贡献者。如果不将头部运动的运动从监控信号中去除,学习到的特征对于AU建模来说将不具有足够的判别性。
为了从中学习面部动作,论文提出了双周期自动编码器(TAE),该编码器自监督学习两种嵌入,分别对由于AUs和头部运动引起的动作进行编码。然后,进一步将运动描

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值