《Deep Adaptive Attention for Joint Facial Action Unit Detection and Face Alignment》(ECCV 2018)
论文链接
摘要
面部动作单元检测和面部对齐是两个高度相关的任务,因为面部关键点可以提供精确的面部动作单元位置,以便于提取有意义的局部特征用于面部动作单元检测。大多数现有的AU检测工作通常将面部对齐作为预处理,并独立处理这两项任务。在本文中,提出了一种新的端到端深度学习框架,用于联合AU检测和面部对齐,这是以前没有探索过的。特别是,首先学习到的是多尺度共享特征,然后将面部对齐的高级特征输入到人脸检测中。此外,为了提取精确的局部特征,提出了一种自适应的注意力学习模块,用于自适应地优化每个AU单元的注意力图(attention map)。最后,将组合后的局部特征与面部对齐特征和全局特征相结合,用于AU检测。在BP4D和DISFA基准上的实验表明,该框架明显优于先进的AU检测方法。
介绍
在大多数与面部相关的任务中,面部对齐通常用于定位特定的面部位置,即关键点(landmarks),来确定面部形状或表情外观。人脸关键点可以提供更精确的AU位置,并具有更好的AU检测性能。Li等人提出了一种基于深度学习的EAC-Net方法,通过使用面部关键点信息增强和裁剪感兴趣区域(ROIs)来检测面部AU。EAC-Net论文
这篇论文提出了一个基于深度学习的联合AU检测和面部对齐框架JAA-Net,利用了这两个任务之间的强相关性。主要说来,首先学习两个任务的多尺度共享特征,并提取面部对齐的高级特征输入到AU检测中。此外,为了提取精确的局部特征,提出了一种自适应注意力学习模块来自适应地优化每个AU的注意力图,该注意力图最初由预测的人脸关键点来初始化。最后,将合成的局部特征与面部对齐特征和全局特征相结合进行AU检测。整个框架端到端,没有任何后处理操作,所有模块共同优化。
论文贡献
①提出的是端到端的多任务深度学习框架,用于联合AU检测和面部对齐。
②利用面部对齐的结果,自适应注意网络可以被学习到用来确定每个AU的ROI的注意力分布。
③在两个基准数据集上进行了大量实验,结果表明所提出的联合框架,显著优先于最先进的方法,特别是在AU检测上。
背景
许多研究证明了利用facial landmarks进行特征提取对AU检测的有效性。
【facial landmarks→ROIs→AUs→feature distributions→deep adaptive attention learning method】