- 博客(9)
- 收藏
- 关注
原创 Dual-Awareness Attention for Few-Shot Object Detection个人理解
针对提出的空间可变性(即很多时候support set中同类的对应位置与query image中同类的位置往往不能对应)与不确定表示(文中说是通过多个同类的support set进行平均池化得到的类原型可能并不能代表该类了于是呢,提出了DAnA。第一个是QPA特征,来引导网络按照自定义支持信息进行检测query image。
2023-05-26 15:17:14 306 2
原创 Meta R-CNN : Towards General Solver for Instance-level Low-shot Learning个人理解
在小样本条件下,在当时检测物体每次是进行检测一个物体(如Few-shot Object Detection via Feature Reweighting中),由于一张图片中,受到复杂的背景和多个其他目标的干扰,检测的效果不好。于是呢,提出了利用Faster RCNN的RPN将目标分为多个proposals,基于proposal来进行检测,这样就避免了其他的干扰。本文还引入了PRN模块,接收含小样本对象和其边界框或者掩码的图片,来得到class attentive vectors.
2023-05-22 11:45:40 1088 1
原创 Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector个人理解
本文的贡献:提出了Attention-RPN,Multi-Relation Detector和对比训练策略,以及提出了一个数据集。
2023-05-18 11:39:43 252 1
原创 DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection个人理解
RPN与RCNN的多阶段矛盾分类与定位的多任务矛盾GDL(Gradient Decoupled layer)对多阶段解耦,重新定义了特征前向操作和梯度回传操作,来解耦其结构之前和之后一层。PCB(Prototypical Calibration Block)对多任务解耦,即采用一个脱机(即事先训练好的)的基于原型的分类器,利用额外的score 来校准分类为得分。
2023-05-17 14:26:28 1166
原创 Meta-DETR: Image-Level Few-Shot Detection with Inter-Class Correlation Exploitation个人理解
主要就是本文的创新点,介绍一下。针对当前的小样本目标检测,普遍存在的两个问题:第一:由Faster RCNN产生的Region proposal的效果不好,导致误分类的情况增高(其实在FSCE就已经提到这点,所以在FSCE这篇论文中采用了一个trick,就是使用区域一致性控制,算是拯救一下吧)。第二:忽略了类间的相关性,导致没有利用类间的相似性来辅助分类,这也就限制了基于微调范式的小样本目标检测的泛化性能。
2023-05-14 10:06:26 1192
原创 FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding个人见解
1.基于TFA作为baseline,对其进行修改,提出了更强的Strong baseline2.提出使用对比学习,使用CPE Loss来计算对比损失3.提出区域一致性控制,保证proposal 的质量。
2023-04-27 11:04:58 844 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人