并查集模板
class UnionFind:
def __init__(self):
"""
记录每个节点的父节点
"""
self.father = {}
def find(self,x):
"""
查找根节点
路径压缩
"""
root = x
while self.father[root] != None:
root = self.father[root]
# 路径压缩
while x != root:
original_father = self.father[x]
self.father[x] = root
x = original_father
return root
def merge(self,x,y,val):
"""
合并两个节点
"""
root_x,root_y = self.find(x),self.find(y)
if root_x != root_y:
self.father[root_x] = root_y
def is_connected(self,x,y):
"""
判断两节点是否相连
"""
return self.find(x) == self.find(y)
def add(self,x):
"""
添加新节点
"""
if x not in self.father:
self.father[x] = None
基本概念
并查集是一种数据结构
并查集这三个字,一个字代表一个意思。
并(Union),代表合并
查(Find),代表查找
集(Set),代表这是一个以字典为基础的数据结构,它的基本功能是合并集合中的元素,查找集合中的元素
并查集的典型应用是有关连通分量的问题
并查集解决单个问题(添加,合并,查找)的时间复杂度都是O(1)O(1)
因此,并查集可以应用到在线算法中
并查集的实现
数据结构
并查集跟树有些类似,只不过她跟树是相反的。在树这个数据结构里面,每个节点会记录它的子节点。在并查集里,每个节点会记录它的父节点。
class UnionFind:
def __init__(self):
"""
记录每个节点的父节点
"""
self.father = {}
可以看到,如果节点是相互连通的(从一个节点可以到达另一个节点),那么他们在同一棵树里,或者说在同一个集合里,或者说他们的祖先是相同的。
初始化
当把一个新节点添加到并查集中,它的父节点应该为空
def add(self,x):
"""
添加新节点
"""
if x not in self.father:
self.father[x] = None
合并两个节点
如果发现两个节点是连通的,那么就要把他们合并,也就是他们的祖先是相同的。这里究竟把谁当做父节点一般是没有区别的。
def merge(self,x,y,val):
"""
合并两个节点
"""
root_x,root_y = self.find(x),self.find(y)
if root_x != root_y:
self.father[root_x] = root_y
两节点是否连通
我们判断两个节点是否处于同一个连通分量的时候,就需要判断它们的祖先是否相同
def is_connected(self,x,y):
"""
判断两节点是否相连
"""
return self.find(x) == self.find(y)
查找祖先
查找祖先的方法是:如果节点的父节点不为空,那就不断迭代。
def find(self,x):
“”"
查找根节点
“”"
root = x
while self.father[root] != None:
root = self.father[root]
return root
这里有一个优化的点:如果我们树很深,比如说退化成链表,那么每次查询的效率都会非常低。所以我们要做一下路径压缩。也就是把树的深度固定为二。
这么做可行的原因是,并查集只是记录了节点之间的连通关系,而节点相互连通只需要有一个相同的祖先就可以了。
路径压缩可以用递归,也可以迭代。这里用迭代的方法。
def find(self,x):
“”"
查找根节点
路径压缩
“”"
root = x
while self.father[root] != None:
root = self.father[root]
# 路径压缩
while x != root:
original_father = self.father[x]
self.father[x] = root
x = original_father
return root
路径压缩的时间复杂度为O(\log^*n)O(log
∗
n)
\log^*nlog
∗
n 表示 n 取多少次\log_2nlog
2
n并向下取整以后 变成 1
可以认为O(\log^*n) = O(1)O(log
∗
n)=O(1),因为\log*2{65536} = 5log
∗
2
65536
=5,而2^{65536}2
65536
是一个天文数字。这个时间复杂度当成结论记下就可以。
class UnionFind:
def __init__(self):
"""
记录每个节点的父节点
"""
self.father = {}
def find(self,x):
"""
查找根节点
路径压缩
"""
root = x
while self.father[root] != None:
root = self.father[root]
# 路径压缩
while x != root:
original_father = self.father[x]
self.father[x] = root
x = original_father
return root
def merge(self,x,y,val):
"""
合并两个节点
"""
root_x,root_y = self.find(x),self.find(y)
if root_x != root_y:
self.father[root_x] = root_y
def is_connected(self,x,y):
"""
判断两节点是否相连
"""
return self.find(x) == self.find(y)
def add(self,x):
"""
添加新节点
"""
if x not in self.father:
self.father[x] = None
以上就是并查集的基本模板,根据不同的题目要求进行对应的添加即可。
考察连通分量的数目,所以我们要在模板中额外添加一个变量去跟踪集合的数量(有多少棵树)。
初始化的时候把集合数量加一
合并的时候让集合数量减一
class UnionFind:
def __init__(self):
self.father = {}
# 额外记录集合的数量
self.num_of_sets = 0
def find(self,x):
root = x
while self.father[root] != None:
root = self.father[root]
while x != root:
original_father = self.father[x]
self.father[x] = root
x = original_father
return root
def merge(self,x,y):
root_x,root_y = self.find(x),self.find(y)
if root_x != root_y:
self.father[root_x] = root_y
# 集合的数量-1
self.num_of_sets -= 1
def add(self,x):
if x not in self.father:
self.father[x] = None
# 集合的数量+1
self.num_of_sets += 1
class Solution:
def findCircleNum(self, M: List[List[int]]) -> int:
uf = UnionFind()
for i in range(len(M)):
uf.add(i)
for j in range(i):
if M[i][j]:
uf.add(j)
uf.merge(i,j)
return uf.num_of_sets
相关题目
模板题:
以图判树
无向图中连通分量的数目
在线算法:
岛屿数量 II
其他:
除法求值
账户合并
打砖块
矩阵转换后的秩