图像的增强的目的是改善图像的质量
归纳起来,图像质量退化的原因:
- 对比度问题:对比度局部或全部偏低,影响图像视觉
- 噪声干扰问题:使图像蒙受干扰和破坏
- 清晰度下降问题,使图像模糊不清,甚至严重失真
图像的增强是综合和一般性地改善图像质量,解决图像由于噪声、模糊退化和对比度降低等三类问题,获得最好的视觉效果通过对图像的处理,使图像比处理前更适合一个特定的应用突出图像中的“有用”信息,扩大图像中不同物体特征间的差别,为图像信息的识别与提取奠定基础。主要的处理方式:去除噪音、边缘增强、提高对比度、增加亮度、改善颜色效果、改善细微层次等——通常与改善视觉效果相一致
1.空域处理:直接对图像进行处理
-
点运算增强**——灰度级变换增强**
-
直方图增强
直方图均衡化的缺陷:不能用于交互方式的图像增强应用,因为直方图均衡化只能产生 唯一一个结果,恒定值直方图近似。
- 直方图匹配
通过一个指定的函数或用交互方式产生 一个特定的直方图。根据这个直方图确定一 个灰度级变换T®,使由T产生的新图像的直方图符合指定的直方图。
- 彩色图像增强
-
- 在RGB模型上增强——彩色平衡
一些概念:
偏色:采样过程中,由于设备、环境的原因会造成图像的三个颜色分量不同的变换关系,使图像中所有物体的颜色偏离了其原有的真实色彩,这种现象被称为偏色。如图像的灰色部分带有了颜色
灰度平衡:
使RGB彩色设备的彩色分量混合后,
颜色失去色调和饱和度产生灰色,这种颜色混合 效果被称为灰度平衡,一般情况下,等量的RGB
产生灰色。
彩色平衡:
纠正偏色的过程叫作彩色平衡
如何判断彩色图像的偏色: 检查图像的灰平衡(白平衡)情况,即检查在现实中应该是灰色(白色)的物体,在图像中是否是灰色
- 在RGB模型上增强——彩色平衡
HSI图像变换:对各个分量采用线性叠加或者是乘积方式处理。
伪彩色变换:
- 空域模板滤波
空域滤波器:使用空域模板进行的图像处理,被称为空域滤波。模板本身被称为空域滤波器。输出图像中的每一点,为输入图像中某个相关区域象 素集的映射。
平滑滤波器:
根据空域中低通冲激响应函数的图形来设计模板的系数
例如,选择高斯函数作为冲激函数
g(x,y) = h(x,y) * f(x,y)
中值滤波优点:抑制噪声在去除噪音的同时,可以比较好地保留边缘轮廓信息和图像的细节
主要滤波器:
基本高通滤波
高通滤波可看作为:高通 = 原图– 低通
高增益滤波:
高增益 = A原图– 低通(扩大因子A)
微分滤波器:
主要的两种噪声
2.频域处理:在图像的某个变换域内,对图像的变换系数进行运算,然后通过逆变换获得图像增强效果
- 频域滤波
低通滤波
理想低通滤波器
Butterworth低通滤波器
指数低通滤波器
高斯低通滤波器(GLPF)
梯形低通滤波器(TLPF)
高通滤波
同态滤波器
小波变换滤波
- 从频域规范产生空域模板