图形处理(四)——正交变换

图像的频域变换

  1. 图像频域变换的意义
    在这里插入图片描述

  2. 卷积
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  3. 相关
    在这里插入图片描述

  4. 正交变换及其特征

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 正交函数集合完备性的物理意义

任何数量的奇函数累加仍为奇函数
任何数量的偶函数累加仍为偶函数
因此.为了能用累加展开式来表示一个任意函数,就要求这个函数集合中既有奇函
数又有偶函数离散图像的正交变换。

  • 一般范式—酉变换

在这里插入图片描述
在这里插入图片描述

**- 正交变换是酉变换的特例

- 它们都可以用于信号分析

- 用于信号分析的基函数集合和正交矩阵都应满足正交性和**

  1. 二维酉变换
    在这里插入图片描述
  2. 变换核可分性
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  3. 酉变换的性质
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

5.图像变换

将图像看成是线性叠加系统
图像在空域上具有很强的相关性
图像变换是将图像从空域变换到其它域如频域的数学变换
借助于正交变换的特性可使在空域上的复杂计算转换到频域后得到简化
借助于频域特性的分析,将更有利于获得图像的各种特性和进行特殊处理

  • 进行图像变换的基本条件

满足正交、完备两个条件的函数集合或矩阵才能用于图像的分析

常用的几种变换:傅里叶变换、WALSH变换、哈达玛变换、Haar变换、SLANT变换、K-L变换以及特定条件下的CONSINE变换、SINE变换等,都满足正交性和完备性两个条件

6.傅立叶变换定义与特征
在这里插入图片描述

在这里插入图片描述

  • 一维傅里叶变换

在这里插入图片描述
R(u),I(u)分别称为傅里叶变换F(u)的实部和虚部
在这里插入图片描述
在这里插入图片描述

  • 二维傅里叶变换
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 二维离散傅立叶变换的性质

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

  • 二维离散傅立叶变换的显示
    在这里插入图片描述
    在这里插入图片描述
  • 离散傅立叶变换的幅度与相位

图像信号的傅里叶变换包含幅度与相位两部分
幅度谱具有较明显的信号结构特征和易于解释
实验证明,幅度本身只包含有图像本身含有的周期结构,并不表示其在何处
相位谱类似随机图案,一般难以进行解释物体在空间的移动,相当于频域的相位移动,相位谱具有同样重要的意义
单凭幅度或相位信息,均不足以恢复原图像

7.快速傅里叶变换(FFT)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 逆向FFT算法
    在这里插入图片描述
    在这里插入图片描述
    8.傅里叶变换的应用
    在图像高低通滤波中的应用
    在图像噪声滤波中的应用
    在图像的选择性滤波中的应用
    在图像压缩中的应用
    在图像增强中的应用

9.其他变换

  • 离散余弦变换
    傅里叶变换的一个最大问题是:
    它的参数都是复数,在数据的描述上相当于实数的两倍。为此,我们希望有一种能够达到相同功能但数据量又不大的变换
    在这里插入图片描述
    一维情况
    在这里插入图片描述
    二维情况
    在这里插入图片描述
    余弦变换的性质
    余弦变换为实的正交变换,变换核的基函数正交
    序列的余弦变换是DFT的对称扩展形式
    核可分离,可以用两次一维变换来执行
    余弦变换的能量向低频集中
    余弦变换有快速变换,和傅立叶变换一样,分奇偶组
    可用于压缩编码
  • 沃尔什变换——哈达玛变换
    只包含+1和-1的正交矩阵结果,形成哈达玛矩阵
    在这里插入图片描述
    Walsh函数:函数取值仅有两个(0,1 或-1,+1)

二维沃尔什—哈达玛变换
在这里插入图片描述
沃尔什—哈达玛变换特性

  • WHT变换是实的、对称的、正交变换

  • WHT可由快速算法实现,因为DHT只包括加减,因此没有任何乘法运算。

  • WHT有较好的能量集中特性

  • 斜变换
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • K-L变换:霍特林变换(主成分变换),
    求解流程

  • 确定随机向量X及其样本集合范围 ,在确定的随机向量集合下,关键的是确定 协方差矩阵;进而由协方差矩阵通过线性 代数计算得出特征向量与特征值 。

  • 变换的实质在于:输入随机向量X中各分 量之间存在很强的相关性,通过变换使输 出随机向量Y中各分量之间互不相关。若定义不同的输入随机向量组成方式,则 可导致不同的应用方向
    小波变换

简单来说就是有X求出其集合的均值,进而求出X集合的协方差,然后求解出X集合协方差的特征值和特征向量,特征值降序排列,取前k个值对应的特征向量构成变换矩阵Q,进而求出变换矩阵Y.

在这里插入图片描述在这里插入图片描述
K-L变换的目标

  • 在于找出使X矢量中各分量相关性降低或去除的方向,对图像进行旋转,使其新空间的坐标轴指向主分量方向—主成分分析或主成分变换,可实现多维空间中的去相关。
  • 各主分量相互之间的互不相关,使得变换后的特征具有独立描述图像的全部信息,将原始的多波段图像转换为主分量图像,将使大量信息更多地集中在少数几个分量上,实现有效的特征抽取。

在这里插入图片描述
在这里插入图片描述

  • 哈尔变换

  • 哈尔函数的定义
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 哈尔变换的特性

  • Haar函数的一个重要特性—收敛均匀而迅速;傅里叶变换的基函数仅是频率不同,哈尔函数在尺度和位 置上都不同 哈尔变换具有尺度和位置的双重性

  • 全域特性和区域特性:哈尔函数系列可分为全域部分和区 域部分。全域部分作用于整个变换区间,区域部分作用于 局部区域

小波函数

  • 稳态信号特征
  • 由一系列不随时间变化的频率组成 不需要知道任何频率的开始与停止时间;
  • 傅立叶变换基于在时间轴上无限伸展的正弦曲线波作为正交基函数,十分适于表现稳态信号,傅里叶变换可以准确地知道信号中含有哪些频率成分,但不知道这些成分发生的时间、位置
  • 在这里插入图片描述
  • 非稳态信号
  • 具有随时间变化的频率成分,分析中需要知道 , 什么频率在什么时候发生 ,特定频率发生的位置

在这里插入图片描述

  • Gabor变换(1946)

或称之为加窗付里叶变换、短时傅里叶变换(STFT)首先产生;
在这里插入图片描述

  • Gabor变换具有特征:

  • 实现了对于信号的频率与时间观察的折衷 ,无论时间还是频率的观察均为有限精度;整体精度取决于 窗口尺寸 , 一旦窗口尺寸确定,将作用于所有频率

  • 实际信号需要在时间与频率方面更为灵活的观察与分析

小波变换
采用频率不同、位置不同、宽度有限的基函数进行变换

  • 哈尔变换—最早出现的小波变换实例,其基向量均为一个函数通过不断的平移和伸缩来产生。具有奇数矩形脉冲对的哈尔函数为最古老又最简单的小波

  • 小波是具有有限区间和均值为零的波
    在这里插入图片描述
    在这里插入图片描述
    两个条件可概括为:小波应是一个具有振荡性和迅速衰减的波
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 尺度(Scaling)—小波的“尺度”变化意味着对小波进行“拉伸”或“压 缩”,某种程度上类似于频率:频率~1/a
    在这里插入图片描述

  • 位移(Shifting)—延迟或加速小波 ,数学上,延迟一个函数f(t)表示为f(t-k)

  • 在这里插入图片描述

  • **小波变换的基本性质 **

  • 线性—小波变换是线性变换 ; 平移和伸缩的共变性; 冗余性:连续小波变换中存在信息表述的冗余度

  • 离散小波变换
    在这里插入图片描述

  • 二进小波变换
    在这里插入图片描述

  • 二进正交小波变换

  • 在这里插入图片描述
    在这里插入图片描述

  • 快速小波变换

将一个离散信号通过两个滤波器滤波并通过二选一的采样,发现滤波器如果满足一定条件,信号可以在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 为构造一个离散小波变换,仅需选择一个满足某些条件的离散低通滤波器H0(s),假定其脉冲响应为h0(k),该脉冲响应称之为尺度向量
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • **尺度函数对应于任意函数的平滑部分(近似表示部分、粗分量) **
  • 小波基函数对应于任意函数的细节部分(细节描述部分、细分量)
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 4
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值