我的算法日志:排序算法之快速排序

6 篇文章 0 订阅
  • 快速排序(Quicksort)是对冒泡排序的一种改进,由C. A. R.Hoare在1960年提出。
  • 它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

以6、1、7、9、3、8、2、10、3、7
这10个数为例,首先要在这个序列中随便找一个基准数(为了方便,一般都选第一个元素作为基准数),我们现以6为基准数。
接下来操作的目的就是为了让比基准数6大的数放在6的左边,比基准数6小的数放在6的右边。

具体的操作方法是:先从右往左找到第一个小于6的数,在从左往右找到第一个大于6的数,然后交换他们!
在这里插入图片描述
然后分别将基准数左边和右边的元素按照以上方法递归操作即可完成排序。

java代码实现:
package com.guohao.arithmetics;

import java.util.Arrays;
import java.util.Scanner;

/**
 * 快速排序
 */
public class QuickSort {
    public static void main(String[] args){
        Scanner reader = new Scanner(System.in);
        int n = reader.nextInt();  //待排序的元素个数
        int[] arr = new int[n];  //用于储存待排序元素的数组

        //用户从键盘输入待排序元素
        for (int i=0; i<n; i++){
            arr[i] = reader.nextInt();
        }
        reader.close();

        sort(arr, 0, arr.length-1);  //调用sort方法对数组arr进行排序

        System.out.println("排序后的数组:"+ Arrays.toString(arr));
    }

    /**
     * 将整型数组arr中的元素从小到大排序
     * @param arr
     * @param left
     * @param right
     */
    public static void sort(int[] arr, int left, int right){
        if(left > right){
            return ;
        }

        int temp = arr[left];  //基准数temp
        int i=left, j=right;

        while(i != j){
            while(arr[j]>=temp && i<j){  //从右向左找到一个比temp小的数,记录其下标
                j--;
            }

            while(arr[i]<=temp && i<j){  //从左向右找到一个比temp大的数,记录其下标
                i++;
            }

            if(i < j){  //交换两个数的位置
                int t = arr[i];
                arr[i] = arr[j];
                arr[j] = t;
            }
        }

        //使基准数归位
        arr[left] = arr[i];
        arr[i] = temp;

        sort(arr, left, i-1);  //递归处理基准数左边的元素
        sort(arr, i+1, right);  //递归处理基准数右边的元素
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值