# 问题描述

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

# Input Specification

Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

# Output Specification

For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

# Sample Input

10
1 2 3 4 5 6 7 8 9 0

# Sample Output

6 3 8 1 5 7 9 0 2 4

# C语言代码

#include <stdio.h>
#include <stdlib.h>

int b[2048];
int pos = 0;

void sort(int *arr, int num)
{
int i, j;
int temp;

for(i=0;i<num;i++) {
for(j=i;j<num;j++) {
if(arr[i]>arr[j]) {
temp = arr[j];
arr[j] = arr[i];
arr[i] = temp;
}
}
}
}

void mid_tree(int root, int N, int a[])
{
if(root<=N) {
mid_tree(2*root, N, a);
b[root] =  a[pos++];
mid_tree(2*root+1, N, a);
}
}

int main()
{
int N, i;
int data[2048];
scanf("%d\n", &N);
for(i=0;i<N;i++) {
scanf("%d", &data[i]);
}
sort(data, N);
mid_tree(1, N, data);
for(i=1;i<=N;i++) {
if(i==1) {
printf("%d", b[i]);
} else {
printf(" %d", b[i]);
}
}

return 0;
}


03-08 64
11-19 179