题目描述:
给定两个整数,被除数 dividend 和除数 divisor。将两数相除,要求不使用乘法、除法和 mod 运算符。
返回被除数 dividend 除以除数 divisor 得到的商。
整数除法的结果应当截去(truncate)其小数部分,例如:truncate(8.345) = 8 以及 truncate(-2.7335) = -2
示例:
示例 1:
输入: dividend = 10, divisor = 3
输出: 3
解释: 10/3 = truncate(3.33333..) = truncate(3) = 3
示例 2:
输入: dividend = 7, divisor = -3
输出: -2
解释: 7/-3 = truncate(-2.33333..) = -2
解析:
在不能使用乘除法的情况下实现整除,那么就要回归原始,使用加减法去完成。
当然,这里并不是简单靠一个循环查看被除数能够减去多少个除数,而是先查看被除数能够减去多大的除数的倍数(divisor * 2x)。
这里我们就使用移位操作,因为移位效率较高。
代码:
int divide(int dividend, int divisor)
{
//比较特殊的3种情况
if(divisor==0)
{
return 0;
}
if(divisor==1)
{
return dividend;
}
if(divisor==-1)
{
if(dividend>INT_MIN)
{
return -dividend;
}
return INT_MAX;
}
//查看符号
//取异或,即对最高位取异或
//符号不同返回1,在有符号整数中即为一个负数
//flag就表示商是否为负数
bool flag = (dividend ^ divisor) < 0;
//由于接下来可能会出现溢出int的作用域,因此使用long保存
//后改为unsigned int是因为就算溢出也是溢出一位,索性直接用unsigned int
unsigned int a = abs(dividend);
unsigned int b = abs(divisor);
int ans = 0;
//模拟除法,先从最高位相比较
for(int i=31;i>=0;i--)
{
//截取刚好能除
if((a>>i)>=b)
{
//更新商、更新被除数剩余
ans += 1 << i;
a -= b << i;
}
}
//判断符号
return flag ? -ans : ans;
}