阅读:IA-GCN: Interactive Graph Convolutional Network forRecommendation

IA-GCN是一种新型的推荐系统模型,通过在用户-项目交互图上建立双向交互式指导,解决了传统图卷积网络在协同过滤中的后期融合问题。IA-GCN在用户树和项目树之间建立交互链接,针对目标项目和用户进行特征聚合,从而捕获交互特征,提高偏好预测的准确性。在多个基准数据集上,IA-GCN表现出优于其他基于GCN的推荐算法的性能和鲁棒性。
摘要由CSDN通过智能技术生成

摘要:

近年来,图卷积网络(GCN)已成为一种新型的基于协同过滤(CF)的推荐系统(RS)的新技术。通过在用户-项目二部图上进行嵌入传播来学习信息丰富的用户和项目表示方式,然后根据这些表示方式为用户提供个性化的项目建议。尽管现有算法有效,但在嵌入过程中忽略了用户-项目对之间宝贵的交互特征。当预测用户对不同项目的偏好时,他们仍然以相同的方式聚合用户树,而不强调用户社区中的目标相关信息。这种统一的聚合方案很容易导致用户和项目表示的次优,在一定程度上限制了模型的表达性。

在这项工作中,我们通过在每个用户-项对之间建立双边交互式指导,并提出一个名为IA-GCN(交互式GCN的缩写)的新模型来解决这个问题。具体来说,当我们从其邻域学习用户表示时,我们给那些类似于目标项目的邻居分配更高的关注权重。相应地,在学习项目表示时,我们更多关注那些与目标用户相似的邻居。这导致了交互式和可解释的特征,通过每个图形卷积操作有效地提取特定于目标的信息。我们的模型建立在LightGCN之上,这是一种最先进的GCN F模型,可以以端到端方式与各种基于GCN的CF架构相结合。在三个基准数据集上进行的大量实验证明了IA-GCN的有效性和鲁棒性。

通过在每个用户-项对之间建立双边交互式指导

  • 在学习用户(user)表示的时候,注重在 item 树中给跟目标用户相似的邻居分配更多的权重。
  • 在学习项目(item)表示时,更关注在 user 树中与目标 item 相似的邻居。

1介绍

一般来说,CF的偏好得分是通过融合(内积[22]、MLP[17]、欧氏距离[18]等)来预测的。两个嵌入向量,分别代表目标用户𝑢和目标项目𝑖的潜在特征的嵌入向量。因此,如何构建表达性嵌入来捕获令人满意的用户/项目肖像对预测性能至关重要。早期的CF算法,如矩阵分解(MF),大多直接将用户/项目ID投影到嵌入向量[22]中。后来,许多人通过将𝑢的历史交互作为她在嵌入计算[26,56]中预先存在的特征,来增强目标用户𝑢的嵌入。近年来,基于图卷积神经网络(GCN)的CF算法出现了许多新兴的研究,通过利用用户和项目之间的高跳连接性,进一步提高了𝑢/𝑖的嵌入向量的表达能力。代表性作品包括[54],NGCF[46],Light-GCN[15]和[47,49]。具体来说,CF的数据结构很自然地出现在一个二部图中:用户和项目作为节点,交互作为边。节点𝑢/𝑖的𝐾阶特征总结了𝑢/𝑖的𝐾-hop邻域内的信息,通过𝐾堆叠图卷积层进行聚合,形成一个树状结构,即用户/项目树。我们在图1a中说明了这种常用的大树结构。

尽管经过了广泛的研究,但现有的基于GCN的CF算法大多存在一个关键的限制,在CF层的最终融合之前,用户树和项目树之间没有交互。这是因为它们的聚合主要继承自传统的GCNs,例如GraphSage[13],它最初是为了在每个节点上的分类而提出的。然而,推荐任务与分类有根本的不同:吸引𝑢的不是𝑢和𝑖的购买力和𝑖的评级,而是它们的互动特征,如𝑢在选择𝑖和𝑖的部分特征时的考虑,决定了偏好。由于这种次优的晚期融合体系结构,现有的算法错过了宝贵的交互特征,因此在偏好预测中无效。

为了解决这一限制,我们提出了交互式GCN,这是一种专门设计的,用来建立基于GCN的CF中的用户-项目交互模型的新架构。与传统的将𝑢和𝑖的一般特征独立提取的gcn不同,IA-GCN在这两棵树之间建立了显式的引导链接(图1b)。对于用户树中的聚合,我们将高重要性分配给类似于目标项𝑖的邻居。相应地,在项目树中,我们强调与目标用户𝑢相似的邻居。这个交互式指导使GCN能够通过每个信息专注于目标特定的信息卷积,从而捕获𝑢/𝑖的高阶特征中的交互特征,最终有助于偏好预测的显著提高。综上所述,我们做出了以下贡献:

•据我们所知,我们是第一个在传统的基于GCN的CF算法中强调晚期融合对聚合𝑢和𝑖的高阶特征的负面影响。

•我们提出了IA-GCN,一种专门针对CF的新型GCN架构。其关键思想是通过在两棵树之间构建交互式引导,提取𝑢和𝑖的交互式特征,通过每个卷积操作强调目标特定的信息。

•我们通过在常用的基准数据集上进行的大量实验,验证了IA-GCN的有效性。IAGCN的性能优于各种最先进的基于GCN的CF算法,验证了捕获交互式特性的重要性。

2相关工作

我们的工作与三个活跃的研究领域密切相关:协同过滤、推荐的GCN和注意机制。

2.1协作过滤

协作过滤(CF)假设具有相似偏好的用户也可能对类似的项目[39]感兴趣。CF的一个常见范例是通过潜在向量来表示用户和项目,然后试图通过建模历史交互来获得交互的概率。矩阵分解将用户和项目嵌入到嵌入中,并直接使用内积进行预测[22]。后续的工作主要涉及两个方向:更好的嵌入或优化交互功能

[4,15,16,21,45,54]不是只使用用户和项目的id,有些工作是专注于通过合并广泛的辅助信息和历史用户行为来扩展项目或用户的表示。具体来说,aSDEA[10]添加了项目属性来帮助学习项目表示,而ACF[4]和NAIS[16]则总结了历史项目的用户嵌入,并将其视为用户特性。此外,考虑到构建交互式数据作为二部图的有效性和神经图网络的成功,最近的工作,如NGCF[46]、PinSage[54]和LightGCN[15],在一个图中重组个人历史,并从多跳邻居中提取有用的信息来细化嵌入。

另一方面,深度协作过滤模型强调了用户-项目交互如何建模的重要性。在MF算法中广泛使用的内积被神经网络[17,18,35]中的非线性函数所取代。LRML[41]还尝试使用欧几里德距离作为一个度量标准,来确定用户和项目之间是否存在交互作用。

2.2推荐GCN

近年来,图卷积网络在社交网络分析[33]、生物医学网络[29,36,44,50,53]和推荐系统[15,46,47,54],用于处理非欧几里得数据。早期的工作基于图傅里叶变换[3,9]定义谱域的图卷积。最近的研究,包括GCN[20]、GraphSAGE[13]和GAT[42],根据邻域聚合方案重新定义了空间域的图卷积,在节点分类[20]、链接预测[24]、图表示学习[55]等广泛的任务中表现出了优越的性能。

在本文中,我们集中研究了基于cf的推荐场景中的GCN模型[5,15,46,47,49,54],其中用户-项目的交互行为被表述为一个二部图。有影响力的工作包括PinSAGE[54],它利用有效的随机游动进行图卷积来降低网络推荐系统的计算复杂度,以及NGCF[46],它通过在图上传播用户和项目嵌入来显式地编码高级协作信号。后来,Wang等人[47]开发了DGCF来建模不同的用户-项目交互,从而产生意图感知的表示。最近,研究人员一直致力于简化推荐任务[5,15,30]的GCN设计。受SGCN[48]的启发,He等人[15]提出了LightGCN,该方法通过去除特征变换和非线性激活来设计一个光图卷积,以实现训练的有效性和泛化能力。为了进一步减少负担,UltraGCN[30]设计了一个约束损失来近似于无限层的消息传递。最近,在对比学习能力的激励下,Wu等人[49]提出了一种新的学习方案SGL,该方案将节点自我识别作为自我监督任务,以实现适度程度的偏差,增强对噪声交互的鲁棒性。

尽管做了这些努力,现有的作品在预测用户对项目的偏好时,从自己的社区独立学习用户和项目表示。也就是说,用户在嵌入过程中不知道目标项,反之亦然。我们的工作解决了这个问题,并专门将交互式指导集成

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值