数据结构与算法实战(二)基础排序算法
包含选择排序和插入排序
一、选择排序法
1、算法引入
先把最小的拿出来,在剩下的里面再把最小的拿出来…
这个过程一直持续,每次选择还没处理的元素里最小的元素
2、原地排序
排序过程占用了额外的空间,而是否可以原地完成是排序算法中一个关键点。
选择排序法可以原地排序
3、算法思想
循环不变量:arr[i…n) 未排序 arr[0…i) 已排序
arr[i…n) 中的最小值要放到arr[i]的位置
4、代码实现
//使用泛型
public class SelectionSort {
private SelectionSort(){}
//extends 使用在泛型表示实现了Comparable接口
public static <E extends Comparable<E>> void sort(E[] arr){
//arr[i...n) 未排序 arr[0...i) 已排序
for (int i = 0; i < arr.length; i++) {
//选择arr[i ... n)中的最小值的索引
int minIndex = i;
for (int j = i; j <arr.length ; j++) {
if(arr[j].compareTo(arr[minIndex]) < 0)
minIndex = j;
}
swap(arr, i, minIndex);
}
}
private static <E>void swap(E[] arr,int i, int j){
E t = arr[i];
arr[i] = arr[j];
arr[j] = t;
}
public static void main(String[] args) {
Integer[] arr={1,3,4,6,5,2};
SelectionSort.sort(arr);
for (int e:arr
) {
System.out.print(e+" ");
}
System.out.println();
}
}
5、使用自定义类型排序
//为进行排序需要实现Comparable接口
public class Student implements Comparable<Student>{
private String name;
private int score;
public Student(String name, int score) {
this.name = name;
this.score = score;
}
@Override
public int compareTo(Student another) {
// if(this.score < another.score)
// return -1;
// else if(this.score == another.score)
// return 0;
// return 1;
//成绩从小到大排序
return this.score - another.score;
}
@Override
public String toString() {
return "Student{" +
"name='" + name + '\'' +
", score=" + score +
'}';
}
}
Student[] students ={new Student("Alice",90)
,new Student("ycj",100)
,new Student("Simone",60)};
SelectionSort.sort(students);
for (Student student: students
) {
System.out.println(student + " ");
}
6、复杂度分析
for (int i = 0; i < arr.length; i++) {
//选择arr[i ... n)中的最小值的索引
int minIndex = i;
for (int j = i; j <arr.length ; j++) {
if(arr[j] < arr[minIndex])
minIndex = j;
}
swap(arr, i, minIndex);
}
O(n²)的复杂度
7、算法性能
public class ArrayGenerator {
private ArrayGenerator(){}
//生成一个长度为n的随机数组,每个数字的范围是[0,bound)
public static Integer[] generateRandomArray(int n ,int bound){
Integer[] arr = new Integer[n];
Random random = new Random();
for (int i = 0; i < n; i++) {
arr[i] = random.nextInt(bound);
}
return arr;
}
}
int n = 10000;
Integer[] arr = ArrayGenerator.generateRandomArray(n,n);
long startTineme = System.nanoTime();
SelectionSort.sort(arr);
long endTime = System.nanoTime();
double time = (endTime - startTineme) / 1000000000.0;
System.out.println(time + "s");
8、验证算法是否正确
public class SortingHelper {
private SortingHelper(){}
public static <E extends Comparable<E>> boolean isSorted(E[] arr){
for (int i = 1; i < arr.length; i++) {
if(arr[i-1].compareTo(arr[i]) > 0)
return false;
}
return true;
}
}
9、测试算法性能是否为O(n²)
public class SortingHelper {
private SortingHelper(){}
public static <E extends Comparable<E>> boolean isSorted(E[] arr){
for (int i = 1; i < arr.length; i++) {
if(arr[i-1].compareTo(arr[i]) > 0)
return false;
}
return true;
}
public static <E extends Comparable<E>> void sortTest(String sortName, E[] arr){
long startTineme = System.nanoTime();
if(sortName.equals("SelectionSort"))
SelectionSort.sort(arr);
long endTime = System.nanoTime();
double time = (endTime - startTineme) / 1000000000.0;
if(!SortingHelper.isSorted(arr))
throw new RuntimeException(sortName+"failed");
System.out.println(String.format("%s , n = %d : %f s",sortName,arr.length
,time));
}
}
int[] dataSize = {10000,100000};
for(int n : dataSize){
Integer[] arr = ArrayGenerator.generateRandomArray(n,n);
SortingHelper.sortTest("SelectionSort",arr);
}
数据量差十倍,时间相差约为100倍
二、插入排序法
1、算法引入
以手中的扑克牌为例,每一次处理一张牌,把这张牌插入到前面已经排好序的牌中
2、算法思想
循环不变量:arr[0,i) 已排好序 ; arr[i…n) 未排序
把arr[i] 放到合适的位置
插入排序与选择排序的区别在于当第i次遍历,选择排序前i个元素是整个数组中最小的i个元素的有序集合,而插入排序仅仅是i遍历到的i个元素中的有序集合
3、代码实现与测试
public class InsertionSort {
private InsertionSort(){}
public static <E extends Comparable<E>> void sort(E[] arr){
for (int i = 0; i < arr.length; i++) {
//将arr[i]插入到合适的位置
for (int j = i; j -1 >=0 ; j--) {
if(arr[j].compareTo(arr[j-1]) < 0)
swap(arr,j,j-1);
else break;
}
}
}
private static <E>void swap(E[] arr,int i, int j){
E t = arr[i];
arr[i] = arr[j];
arr[j] = t;
}
public static void main(String[] args) {
int[] dataSize = {10000,100000};
for(int n : dataSize){
Integer[] arr = ArrayGenerator.generateRandomArray(n,n);
SortingHelper.sortTest("InsertionSort",arr);
}
}
}
4、插入排序的代码上的小优化
public static <E extends Comparable<E>> void sort2(E[] arr){
for (int i = 0; i < arr.length; i++){
//将arr[i]插入到合适的位置
//先使用一个变量暂存
E t = arr[i];
int j;
for(j = i; j - 1 >= 0 && t.compareTo(arr[j-1]) < 0; j--){
//以赋值的方式
arr[j] = arr[j-1];
}
arr[j] = t;
}
}
5、重要特性
对于有序数组,插入排序的复杂度是O(n)
而对于选择排序,永远都是O(n²)
public static void main(String[] args) {
int[] dataSize = {10000,100000};
for(int n : dataSize){
Integer[] arr = ArrayGenerator.generateRandomArray(n,n);
Integer[] arr2 = Arrays.copyOf(arr,arr.length);
//SortingHelper.sortTest("InsertionSort",arr);
//SortingHelper.sortTest("InsertionSort2",arr2);
System.out.println("Ordered Array");
arr =ArrayGenerator.generateOrderedArray(n);
SortingHelper.sortTest("InsertionSort2",arr);
}
}