最优化理论归纳

什么是最优化问题

通俗地说,就是求一个函数在可行域上的极值。

若函数无约束条件则称为无约束优化;若约束条件为等式则称为等式约束优化;若约束条件为不等式则称为不等式约束优化。


最优性条件

最优性条件即极值点满足的条件。

  • 无约束问题最优性条件

一阶必要条件:一阶导数等于0
二阶必要条件:二阶导数大于等于零

  • 一般约束优化问题的最优性条件
    在这里插入图片描述
    在这里插入图片描述

无约束优化问题的算法框架

  • step0 给定初始化参数及初始迭代点X0,置k=0;
  • step1 若Xk满足终止准则,停止迭代,以Xk作为近似极小点;
  • step2 确定下降方向dk
  • step3 确定步长因子ak,使得f(Xk+ak*dk)<f(Xk);
  • step4 令Xk+1=Xk+ak*dk,k=k+1,转step1;

线搜索

在单变量的情况下可以采

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值