区间DP————石子合并

区间DP————石子合并

  1. 合并石头的最低成本
    力扣:https://leetcode-cn.com/problems/minimum-cost-to-merge-stones/
    有 N 堆石头排成一排,第 i 堆中有 stones[i] 块石头。
    每次移动(move)需要将连续的 K 堆石头合并为一堆,而这个移动的成本为这 K 堆石头的总数。
    找出把所有石头合并成一堆的最低成本。如果不可能,返回 -1 。

示例 1:

输入:stones = [3,2,4,1], K = 2
输出:20
解释:
从 [3, 2, 4, 1] 开始。
合并 [3, 2],成本为 5,剩下 [5, 4, 1]。
合并 [4, 1],成本为 5,剩下 [5, 5]。
合并 [5, 5],成本为 10,剩下 [10]。
总成本 20,这是可能的最小值。
示例 2:

输入:stones = [3,2,4,1], K = 3
输出:-1
解释:任何合并操作后,都会剩下 2 堆,我们无法再进行合并。所以这项任务是不可能完成的。.
示例 3:

输入:stones = [3,5,1,2,6], K = 3
输出:25
解释:
从 [3, 5, 1, 2, 6] 开始。
合并 [5, 1, 2],成本为 8,剩下 [3, 8, 6]。
合并 [3, 8, 6],成本为 17,剩下 [17]。
总成本 25,这是可能的最小值。

提示:

1 <= stones.length <= 30
2 <= K <= 30
1 <= stones[i] <= 100

首先对于区间DP的一般步骤:
1、枚举所有可能的区间长度
2、枚举所有的左端点
3、枚举所有的区间分解点
4、状态转移

for( int len = 2 ; len <= n ; len++ )
{
	for( int i = 1 ; i + len - 1 <= n ; i++ )
	{
		int j = i + len - 1;
		for( int mid = i ; mid <= j ; mid++ )
		{
			//dp[i][j] = f( dp[i][j] )
		}
	}
}

本题我们可以先考虑k = 2的情况。
我们定义f[i][j],f[i][j] 表示将第i堆石子,到 第j 堆石子合并为1堆石子的最小成本,那么接下来我们考虑如何去计算f[i][j]。
由于k = 2,所以在合并任意i 到 j堆石子时,最后一定是将两堆石子合并起来,所有方案唯一的不同无非就是将i 到 j这个区间分为两个区间的分界点是哪个,所以设mid为分界点,则状态转移方程为:
f[i][j] = min( f[i][j] , f[i][mid] + f[mid+1][j] + s[j] - s[i-1] );
s为前缀和,如s[j]表示第一堆石子到第j堆石子的所有成本

那么当k 等于任意常数时该如何解决这个问题呢?

我们由简到繁,先考虑当k 为一个确定值时,什么情况下最终无法合并为一堆石子输出-1?
假设k = 3,我们直接列举可以合并为一堆的情况那就是,3堆,5堆,7堆…不难发现可以合并为一堆的情况之间都相差2,那么很容易得出公式:
当一个区间的长度(石子的堆数) = (k-1)*N + k (N=1,2,3…)时可以将所有石子合并为一堆

接着我们仍然定义状态f[i][j] ,表示将第i堆 到 第j堆石子合并为一堆石子的最小成本,我们还是考虑最后一步,还是假设最后是将两堆石子合并为一堆,
但两堆石子的其中一堆有 1 堆,另一堆有 k - 1 堆,这样他们一共就有k堆了,可以合并为1堆,仍然符合题意,然后这两堆又可以被划分为更小的子问题,所以
f[i][j] = min( f[i][j] , f[i][mid] + f[mid+1][j] );
在加上s[j] - s[i-1]之前要先判断一下i 到 j的区间长度是否满足 k 值

接下来是本题的代码:

#include<stdio.h>
#include<math.h>

int mergeStones(int* stones, int stonesSize, int k)
{
    int n = stonesSize;
    //若不能合并为一堆,直接返回 -1 
    if( (stonesSize-k) % (k-1) != 0 )
        return -1;
    
    int sum[n+1];
    
    //状态表示:f[i][j]:集合:所有将第 i 堆到第 j 堆石子合并为 1 堆石子的合并方法 
	//					 属性:MIN 
	//状态计算:f[i][j] = fmin( f[i][j] , f[i][mid] + f[mid+1][j] );
	//若区间长度符合要求:
	//		    f[i][j] = f[i][j] + sum[j] - sum[i-1];
    int f[n+1][n+1];
	
	//计算前缀和 
    for( int i = 1 ; i <= n ; i++ )
    {
        sum[i] = sum[i-1] + stones[i-1];
    }
	
	//初始化,仅有 f[i][j] = 0 这一个条件
    for( int i = 1 ; i <= n ; i++ )
    {
        f[i][i] = 0;
    }
	
    for( int len = 2 ; len <= n ; len++ )//枚举 区间长度 
    {
    	printf("\nlen = %d\n",len);
        for( int i = 1 ; i + len - 1 <= n ; i++ )//枚举 左端点 
        {
            int j = i + len - 1;
            f[i][j] = 1e8;//初始化初始状态为最大值,方便后续比较 
            
			//在i,j之间移动 mid ,每次移动 K-1 个距离,dp(i,mid) + dp(mid+1,j) 代表以mid为界限合并为两队的成本,取最小值 
			for( int mid = i ; mid < j ; mid += k-1 )//遍历 所有 可能的 区间分解点 
            {
                f[i][j] = fmin( f[i][j] , f[i][mid] + f[mid+1][j] );
                printf("\n判断前:i = %d ,j = %d ,f[i][j] = %d\n",i,j,f[i][j]);
            }
            if( (len-k) % (k-1) == 0 )//若区间长度可以合并,则给f[i][j]加上区间内的成本 
            {
                f[i][j] = f[i][j] + sum[j] - sum[i-1];
                printf("判断后:i = %d ,j = %d ,f[i][j] = %d\n",i,j,f[i][j]);
            }
        }
    }
    return f[1][n];//返回合并第 i 堆到第 j 堆石子的最小成本 
}

int main()
{
	int n,k;
	scanf("%d %d",&n,&k);
	
	int stones[n];
	
	for( int i = 0 ; i < n ; i++ )
	{
		scanf("%d",&stones[i]);
	}
	
	mergeStones( stones , n , k );
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值