题目:
给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。你能求出数列中总共有多少个K倍区间吗?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出
输出一个整数,代表K倍区间的数目。
样例输入
5 2
1
2
3
4
5
样例输出
6
首先想到的肯定是枚举每个区间,将每个区间做和,如果不用前缀和,妥妥地n的3次方的解法,超时是肯定的;在输入的时候,可以O(n)的记录s【i】为前i项的和,那么求i到j区间的和直接可以用是s[j]-s[i-1]快速得到;复杂度降为n的2次方,发现还是超时,题目中的数据n最大是100000;所以nlogn的解法都未必行。
只能另寻它路,我们判断的是(s[j]-s[i-1])%K=0,则是K倍区间;将此处变形;是s[j]%K==s[i-1]%K,则是K倍区间也就是当前的对K取模后的值发现在前面出现过,则一定是个K倍区间;
注意:
1:时间复杂度O(n)
2:用cnt数组记录每个模结果的数量;
3:res记录答案,类型为long long ;
运行后,发现答案为4;不是6;
发现当模为0的时候会出现问题;例子:
1 0 2 0 0
这5个数是前i项和的取模结果,如果到前4项,结果为0,res不能只加一,虽然前面只有一个0,但是它自己
本身就是K的倍数,所以被漏掉;结束后答案应加上cnt【0】;
#include <iostream>
using namespace std;
const int N=1000005;
int f[N];long long s[N]={0};long long res=0;
int cnt[N]={0};
int main()
{
int n,K;
cin>>n>>K;
for(int i=1;i<=n;i++)
{
cin>>f[i];
s[i]=f[i]+s[i-1];
res+=cnt[s[i]%K];
cnt[s[i]%K]++;
}
cout<<res+cnt[0]<<endl;
return 0;
}