题目描述
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/climbing-stairs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
-
示例 1
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1、 1 阶 + 1 阶
2、 2 阶 -
示例 2
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1、 1 阶 + 1 阶 + 1 阶
2、 1 阶 + 2 阶
3、 2 阶 + 1 阶
解题思路
1个台阶有1种方法,2个台阶有2种方法,3个台阶的方法数目是1个台阶和2个台阶方法数目之和(为什么?3个台阶的攀爬方法为1个台阶的所有方法在最后均一步迈上2个台阶,再加上2个台阶的所有方法在最后均一步迈上1个台阶)。之后可以逐步推导出当n≥3时,方法数为n-2个台阶的方法数及n-1个台阶的方法数之和。
思路一:使用递归
思路二:使用数组
代码详解
方法一:递归
由于递归本身就比较难以编写出,且代码执行容易超时(本人就卡在了45)。因此此种方法仅供了解,不推荐。
public static int climbStairs(int n) {
return c