题目描述
编写一个算法来判断一个数 n 是不是快乐数。
快乐数定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。如果 可以变为 1,那么这个数就是快乐数。
如果 n 是快乐数就返回 True ;不是,则返回 False 。
- 示例:
输入:19
输出:true
解释:
12 + 92 = 82
82 + 22 = 68
62 + 82 = 100
12 + 02 + 02 = 1
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/happy-number
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路
首先需要明确的一点是,对于任意数,经过快乐数判断时可能会产生几种情况?
第一:最终得到1
第二:进入一个循环
第三:越变越大直至无穷
前两点是可能会出现的情况,但是第三种情况会发生吗?
举例
一位数:最大值9–>下一个数字为81,变大
二位数:最大值99–>下一个数字为162,变大
三位数:最大值999–>下一个数字为243,变小
四位数及以后,均变小
发现并不会无限变大直至无穷,因此第三种情况不可能出现,编写代码时无需考虑此种情况。
然后便是:如何发现进入了循环?
这个很简单,只要下一个数字在循环的判断中出现过,则必然会进入循环。
代码详解
class Solution {
public boolean isHappy(int n) {
ArrayList<Integer> list = new ArrayList<>(); // 存放出现过的数字
while(true) { // 外层循环
int sum = 0; // 下一个数字累加和
while(n != 0) { // 内层循环
sum = sum + (n % 10) * (n % 10); // 平方累加
n = n / 10; // 不断除10
}
if(sum == 1) { // 跳出循环条件
break;
}
if(list.contains(sum)) {
return false; // 如果出现过便返回false
} else {
list.add(sum); // 未出现则添加至数组中
n = sum; // 把下一个数赋值给要循环处理的变量,进入下一个循环
}
}
return true;
}
}
注意点
- 需要明确判断时可能出现的情况倒底有几种,以便编写返回false的分支代码。