2.1 二分分类
-
特征向量nx的维数64643
y的值为0 或 1 -
符号说明:
-
输入向量x的维度和m代表训练集的数量
-
输出1*m 的y矩阵
2.2 Logistic Regression
- 线性回归不能满足y介于0和1之间的要求(y期望值为1)
sigmoid 函数 在z的大小不同情况下的情况
参数w和b分开用
Logistic Regression cost function
下图有两个损失函数,第一个损失函数虽然能达到要求,但是不适用于梯度下降;
- 简单解释一下第二个损失函数,当y = 1(图片为猫)时,要求y^也尽量靠近1,此时函数后项1-1=0.所以只考虑第一项,ylogy ^=logy ^(y=1),那么久要求y ^尽量靠近1, 才能使损失函数尽可能的小;同理可得y=0的情形
损失函数只衡量单个训练集,接下来的成本函数用来衡量全体训练集