深度学习——day23 class1-week2:二分分类与逻辑回归

2.1 二分分类

  • 特征向量nx的维数64643
    y的值为0 或 1

  • 符号说明:
    在这里插入图片描述

  • 输入向量x的维度和m代表训练集的数量
    在这里插入图片描述

  • 输出1*m 的y矩阵
    在这里插入图片描述

2.2 Logistic Regression

  • 线性回归不能满足y介于0和1之间的要求(y期望值为1)
    在这里插入图片描述
    sigmoid 函数 在z的大小不同情况下的情况
    在这里插入图片描述
    参数w和b分开用
    在这里插入图片描述

Logistic Regression cost function

下图有两个损失函数,第一个损失函数虽然能达到要求,但是不适用于梯度下降;

  • 简单解释一下第二个损失函数,当y = 1(图片为猫)时,要求y^也尽量靠近1,此时函数后项1-1=0.所以只考虑第一项,ylogy ^=logy ^(y=1),那么久要求y ^尽量靠近1, 才能使损失函数尽可能的小;同理可得y=0的情形
    在这里插入图片描述
    损失函数只衡量单个训练集,接下来的成本函数用来衡量全体训练集
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值