运筹学
文章平均质量分 79
咖瑞芝
这个作者很懒,什么都没留下…
展开
-
目标规划之问题数学化(建模)
目标规划不仅从字面上和线性规划看上去很像,其所解决的问题也很像,但是线性规划的约束条件都是绝对性的,要么大于等于、要么小于等于,要求是怎样就必须是怎样;但是目标规划的条件约束是很灵活的,如同名称一样,给出的约束仅仅代表了我的目标是这样的,能不能达到不一定(要有大局观)。为了既能实现这一点又能够将约束条件作为一个有效的求解等式,因此就要引入变量,但由于对结果是高于目标还是低于目标是不确定的,所以需要引入两个相反作用的变量,同一条件下只会有一个变量起作用。例如有这样一道问题:某工厂生产A,B两种机床,在一个原创 2020-12-13 14:56:48 · 1902 阅读 · 1 评论 -
整数规划之0-1问题及隐枚举法
在整数规划中,如果所有决策变量xi只限于取0和1两个值,则称它为0—1规划问题。就像是背包问题,它就是一个典型的0—1规划问题。我觉得背包问题其实在之前刷题的时候还挺难的,但是在运筹学中学习的没有那么深。书上只讲了两种方法:1.显枚举法2.隐枚举法显枚举法又名穷举法,即将每一种情况都代入原式中计算,最后根据结果进行比较,得出最优解。该方法虽然可行,但是随着数据量的增大也会渐渐地不适用。隐枚举法是在显枚举法上的优化,它能够使在达到最优解之前,只需要检查所有可能的变量组合的一部分即可。因为在判断某种原创 2020-11-17 15:34:48 · 4107 阅读 · 3 评论 -
整数规划之割平面法
割平面法同样也是计算整数问题的常用方法之一,但是相对于分支定界法,计算量要小许多,不用每次都要分两种情况进行讨论,而是用它特有的简便方法进行选择。下面我们同样在实战中进行讲解怎样使用割平面法,以下图(I)问题为例:和分支定界法不同的是,割平面法第一步不仅需要暂时不考虑整数这一条件,而且需要将约束条件左右两端都化为整数。然后用单纯形法进行求解,可以得出下表:可以发现,现在的可行解还不是整数,所以现在要对其进一步优化,这也是割平面法关键步骤。将x1和x2的值化成整数+小数的形式,但是要求小数必须是原创 2020-11-16 18:15:55 · 15512 阅读 · 7 评论 -
整数规划之分支定界法
整数规划问题和一般的线性规划问题很类似,唯一的不同点在于可行解必须是整数。这是因为对于某些实际问题,必须要求全部解或者至少部分解为整数。比如,所求的解是人数,机器台数或工厂个数等。整数规划问题一般被分成:1.分支定界法2.割平面法3.0—1规划及隐枚举法4.指派问题这篇文章先讲一下分支定界法。分支定界法是用于求解整数规划问题的,但由于其复杂性所以一般用计算机进行计算,因此若为了应付考试只需要了解即可,不必进行大量练习。分支定界法的核心思想就是剪枝。当我们不考虑所求解必须是整数这个条件时.原创 2020-11-16 17:51:57 · 5515 阅读 · 2 评论 -
10分钟掌握运输问题(三)
从上一篇基本可行解检验中可以得知,如果检验数不全为非正数时需要进行换基迭代。本篇文章就来讲解下如何在基本可行解上进一步找到最优解。换基迭代步骤: ①首先在所有正的检验数中找出一个值最大的检验数,以他对应的位置为起始点做闭回路。 &原创 2020-11-09 20:21:29 · 1010 阅读 · 0 评论 -
10分钟掌握运输问题(二)
通过上一章讲解的基本可行解的确定,我们能够初步计算出一个“最优解”,但是如何判断它是不是最优解呢?这就是本章要说明的:基本可行解的最优性检验。1)闭回路法①操作对象:在计算可行解时中的空格。②使用规则:遇到数字才可以换方向,但也可以不换;偶数次转弯格上的运价标负号,奇数标正号。③结果分析:如果最终检验数均为非正数,则说明为最优解,否则不是。...原创 2020-11-07 16:28:33 · 2000 阅读 · 0 评论 -
10分钟掌握运输问题(一)
运输问题的解答一般分为三个步骤,今天只讲解第一个问题:1.初始基本可行解的确定2.基本可行解的最优性检验3.方案的调整针对问题一:初始基本可行解的确定分为两种方法1)最小元素法:该方法是最贴近日常思维的,但同时也是准确率较低的。最小元素法的基本思想是就近供应,即先从运价表中的最小运价开始分配运输量,确定产销关系,然后按倒数第二小运价分配运量,一直到给出初始基本可行解为止。具体过程如下所示:但从下面要讲的元素差额法可以了解到,上面这种方法计算出的结果并不是最优解。2)元素差额法:最小元素原创 2020-11-07 14:43:47 · 3804 阅读 · 0 评论 -
10分钟也不一定学会的灵敏度分析
灵敏度分析可谓是线性规划中的重难点了,不仅将之前的知识汇总起来,更是考试必考的大题(出题人基本都是先让用单纯形法解出线性规划问题后,紧接着剩下的2,3小问均是灵敏度分析解题)。博主写这一篇博文也是走走停停耽误了很久,前前后后复习了多次QaQ。接下来我们还是提出几个问题:1. 灵敏度分析对应的是怎样的问题?2. 灵敏度分析法解决问题有怎样的优点?不用该方法还有其他方法吗?3. 灵敏度分析类的问题有哪几类?相应的要如何解决?针对问题一:灵敏度分析类问题用流程图来解释的话大致是这样的:判断最.原创 2020-10-31 13:50:22 · 23665 阅读 · 2 评论 -
10分钟掌握对偶单纯形法
只听名字的话会感觉对偶单纯形法和对偶问题关系很大,其实不然(想要了解对偶问题的话可以看我之前的文章)。对偶单纯形法在我看来和大M法以及两阶段法很像,都是用来补充纯粹的单纯形法无法解决特殊问题的缺陷。而且对偶单纯形法更加“强大”,因为它可以在等式右端(b)为负值时直接求解,这也是选择使用它的大多数场景。接下来以下图中题为例直接进行讲解:设:对偶法 = 对偶单纯形法第一步: 与单纯形法一样,对偶法第一步仍然是要化成标准形式,但是注意这里化成标准形式时和单纯形法不同。由于对偶法计算时等式右端可.原创 2020-10-23 20:20:00 · 40495 阅读 · 11 评论 -
10分钟就能随便写出一个线性规划问题的对偶问题
简述别人为何要看你的文章为了有目标的学习这一章节,我们同样提出如下几个问题:对偶问题常见吗?在生活中的实际应用是怎样的?对偶问题在运筹学考试中有什么作用?必须要学吗?要怎样才能实现一个线性规划问题的对偶问题?对偶问题具备怎样的性质?针对问题一:对偶问题在生活中非常常见,可以肯定地说,每一个线性规划问题都存在一个与之对应的对偶问题。其实对偶问题最后的求解虽然和原问题在含义上是不相同的,但是却有某种联系可以将他们连接起来。列举一个书上常见的例子: 某工厂用甲乙两种资源生产A、B、C、.原创 2020-10-19 09:37:40 · 3874 阅读 · 2 评论 -
10分钟看明白大M法和两阶段法
相信学习本章节的朋友都是掌握了单纯形法后,准备学习大M和两阶段法,但是却不知道如何下手;亦或是知道大概过程但是又不清楚中间原理如何实现的。那么这篇文章将会解决以上两种情况给大家带来的困惑。首先我们先提出几个问题:1. 为何学过单纯形法后还要继续学习大M法和两阶段法。2. 大M法和两阶段法的过程有何不同,不同应用场景怎样灵活使用。针对问题一:在运用单纯性法解题时,我们通常会苦恼于其繁琐的过程----换基迭代,一个不小心就会计算错误,但是除了这个问题以外,我们在还没有进行画表,即进行选择基向量时也有原创 2020-10-16 16:08:54 · 14736 阅读 · 6 评论