10分钟就能随便写出一个线性规划问题的对偶问题

序言:

我想对没有学过对偶问题的朋友说:这篇文章能让你以最快的速度了解对偶问题的种种,并且会让你在计算线性规划问题时多一个杀手锏,在将来优化程序时不至于捉襟见肘。

对于已经学过运筹学但是有些生疏的同学:这篇文章不仅能够快速唤醒你尘封的记忆,还能够使你更加深入了解它,有助于印象深刻,不至于下次再来搜索这个知识点

对于那些掌握了运筹学并且能够熟练运用的同学:这篇问题能够帮助你更加深入了解它,本文前两个讨论都是在说明对偶问题的原理即其和原问题的联系

对于该专业方面的大佬:来帮我瞅瞅文章的错误吧!~.~。。


为了有目标的学习这一章节,我们同样提出如下几个问题:

  1. 对偶问题常见吗?在生活中的实际应用是怎样的?
  2. 对偶问题在运筹学考试中有什么作用?必须要学吗?
  3. 要怎样才能实现一个线性规划问题的对偶问题?
  4. 对偶问题具备怎样的性质?


针对问题一: 对偶问题在生活中非常常见,可以肯定地说,每一个线性规划问题都存在一个与之对应的对偶问题。其实对偶问题最后的求解虽然和原问题在含义上是不相同的,但是却有某种联系可以将他们连接起来。列举一个书上常见的例子:

某工厂用甲乙两种资源生产A、B、C、D四种产品,现有资源数、单位产品所需资源数以及单位产品可获得利润如下表所示。问如何组织生产能够使得利润最大?
在这里插入图片描述
根据题意列出的线性规划不等式是这样的(大家不用去推出这个公式,目的在于和下文的对偶问题公式形成对比):
在这里插入图片描述
但是现在如果从另一个角度考虑问题。假设该厂不生产A、B、C、D四种产品,而是将甲、乙两种资源出租给其他单位,其原则是:识别的单位愿意租,又使本单位获利不低于原利润。问如何给甲、乙两种资源定价最合理?

根据题意列出的线性规划不等式是这样的:
在这里插入图片描述

可以发现,两个问题下的线性规划公式很相似(具体的如何转换会在下文予以说明)。那么两个问题具有什么样的实际意义呢?可以考虑该厂的目的现在是想要出租资源但是要保证价格不低于资源变成产品所带来的收益。也就是说第二个问题所求出来的最小(优)值应该是第一个问题求出的最大(优)值,换句话说我们可以通过原问题的对偶问题的最优值来获得原问题的最优值,但为什么要这样做呢?直接用原问题来求得最优值不可以吗?这就是我们第二个问题所涉及的了。


针对问题二:①:仔细对比上图两种式子可以发现,图一中的变量较多而且约束条件较少,相信大家都做过线性规划的问题,不难发现变量越少,约束条件越多对于我们的求解就越有利。这里也是这个道理,通过将原问题转换成为其对偶问题,可以使得更加有利于我们求解线性规划问题,并且从问题一的解答中我们了解到两种问题“本是同根生”,所以对偶问题其实是有利于我们计算复杂线性规划问题的一种"辅助"方式。但是,对偶问题一定比原问题变量要少吗?并不是这样的,但是我们可以非常容易的判断出该问题的对偶问题会不会更简单,这个方法涉及到对偶问题的转换,我们在第三个问题中进行解答。②:其实有时不仅仅是为了减少变量的个数,有的问题甚至必须要通过转换称为对偶问题才能够解决(博主目前的水平下,非数学专业),比如为了将原式化成标准式时会出现(不)等式右端出现负数的情况,这时如果仅用单纯形法是不能够解决的,因此从这个角度来看,为应对考试对偶问题是必须要学习的。


针对问题三: 接下来我们将进入实战,直接用实例来讲解原问题的对偶问题是如何化成的。首先我们以下面这个线性规划问题为例:
在这里插入图片描述
1.对偶问题的目标函数和原问题是相反的,原问题是min则对偶问题为max。并且变量的个数也会发生改变,系数是原问题不等式右端的b值(仅仅是化为对偶问题是不需要将原问题化作标准式的)。根据以上得出目标函数:
在这里插入图片描述
2.接下来是写约束条件,约束条件的书写是最容易出错的地方。我们先写等式的左端,对偶问题等式的左端是根据原问题原问题等式左端竖着来写的;等式的右端就是直接用原问题目标函数中的系数(先不考虑符号),也就是看如下画红框的部分:
在这里插入图片描述

根据原问题竖着的系数来作为对偶问题每个等式中变量的系数;原问题目标函数的系数,可以得出如下(先仔细看下红框里的数据是如何得到的):
在这里插入图片描述
接着是最为重点的约束条件中的符号和变量的范围符号,这两点是根据如下来进行变换:
在这里插入图片描述
解释: 根据max类型写min类型的变量符号时,要根据max的约束条件符号,并且与之相反;写min的约束条件符号时,要根据max类型的变量符号,并且与之相同。反之亦然。另外无约束对应的是‘ = ’。最终得到:
在这里插入图片描述

至此,我们已经讲完了对偶问题的转换方法,下面再举一个max类型转换成min类型的例子,大家可以对照练习加深印象。
在这里插入图片描述


针对问题四: 在这里简单总结以下遇到的定理和性质。

  1. 在互为对偶的线性规划问题中,如果其中一个有最优解,则另一个也有最优解,并且他们的最优值相同。(切记不是最有解,最优解指的是X的取值,该值很大可能不一样)
  2. min问题的任意可行解对应的值一定大于其对偶问题max的值,即min的最优值是max的上限,max的最优值是min的下限。
  3. 一个问题有最优解,那么对偶问题也一定有最优解;一个问题有无界解,那么对偶问题无可行解;但如果一个问题无可行解,那么只能得到对偶问题无可行解或无界解。

原创不易,你的鼓励是我最大的动力。(约耗时2小时)

  • 24
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值