MEM《管综》题目&知识点记录

一、数学

1.基础

1.1有理数和无理数

常见的无理数

π、e(=2.718...)、√2、√3、√5、√10、√99、㏒2^3

建议记下

√2 = 1.414...

√3 = 1.732...

√5 = 2.236...

√10 = 3.162...

无理数即无线不循环小数。

有理数都能用分数表示。

无线循环小数可以用分数表示,因此是有理数:

x=0.2323...

100x=23.2323...

99x=23

x=23/99

两个有理数加减乘除,结果一定是有理数(除数是0除外:0可以作为被除数不能作为除数)。

无理数和有理数(除了0)加减乘除,还是无理数,除了√2*0、0/√2这种情况。

无理数之间的加减乘除,不确定,如√2-√2是有理数、√2+√2还是无理数。

化简:

3x-√5x-2y+4√5y-4-2√5 = 0

3x-2y-4-√5x+4√5y-2√5 = 0

(3x-2y-4) - (√5x-4√5y+2√5) = 0

(3x-2y-4) - √5(x-4y+2) = 0

x-4y+2 = 0      3x-2y-4 = 0

x-4y+2-3x+2y+4 = 0

-2x-2y+6 = 0

-2x-2y = -6

-2(x+y) = -6

x+y = 3

x=3-y

x-4y+2 = 0    3-y-4y+2 = 0   5-5y = 0  y = 1

x = 2

结果:x=2,y=1

1.2自然数

假设该自然数为x,则√x = a,x=a^2 ,相邻的两个自然数:a^2-1、a^2+1

相邻的两个自然数的算数平方根:√(a^2-1)、√(a^2+1)

1.3整除&公约数公倍数

如6和9。

互为质数:两个数除了1之外没有别的公约数,如3和5,则3和5互为质数。

质数:在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。

2和6的最大公约数是2、最小公倍数是6。

快速找到两个自然数的最大公约数和最小公倍数,短除法:

16和24的最大公约数:2*2*2=8

最小公倍数:2*2*2*2*3=48

对于求3个自然数的最大公约数和最小公倍数,采用短除法的注意事项

——(2  5  8的时候,2、8还可以再约、此时为了求得正确的最小公倍数,应继续对2、8约分,对5要照抄保留!

12、30、48的最大公约数:2*3=6

最小公倍数:2*3*2*1*5*4=240

至少可以剪出几个就是要先求出90、42的最大公约数,为6;

90/6=15个/行

42/6=7个/列

所以是15*7=105个

能被2整除的数的特征:2的1次方等于2,所以末位能被2整除的数是能被2整除的数。
能被4整除的数的特征:2的2次方等于4,所以末2位能被4整除的数是能被4整除的数。
能被8整除的数的特征:2的3次方等于8,所以末3位能被8整除的数是能被8整除的数。
能被16整除的数的特征:2的4次方等于16,所以末4位能被16整除的数是能被16整除的数。

能被125整除的数:125、250、375、500、675、750、875、1000

能被9整除的数的特征:每个位上的数的和能被9整除,该数就是9的倍数。

能被11整除的数:奇数位之和与偶数位之和的差能被11整除。

能被9整除的数的特征:每个位上的数的和能被9整除,该数就是9的倍数。推理:

对于某数wxyz,如果能被9整除。则有w*10000+x*1000+10*y+z = 9*n,继续推理,

(x+y+z) + (w*9999+x*999+9*y) = 9*n,因为(w*9999+x*999+9*y)可以被9整除,所以(x+y+z)也可以被9整除,所以每个位上的数的和能被9整除的数,该数是9的倍数。

45*x = 67□8□

5*9*x = 67□8□

67□8□是5的倍数   =>  67□80、67□85

67□8□是9的倍数   =>  67□80、67□85是9的倍数   => 

        对于67□80,6+7+x+8+0=9*n,x=6   =>  67680

        对于67□85,6+7+x+8+5=9*n,x=1   =>  67185

所以:67680、67185

1.4奇数和偶数

和差同性是指任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。

 根据和差同奇偶、以及偶-偶、奇-奇都是偶数,推出差不可能是5。

两个条件单独都充分,条件判断题选D。 

必须翻动3+2n=奇数次才能全部杯口朝下,4是偶数,所以答案是不能

1.5质数和合数

质数和合数的范围:> 1的整数不是质数就是合数(1既不是质数也不是合数)

对539进行分解质因数7*7*11

1.6比与比例

b:a = 3:4          c:b = 4:5

a:b=1/3:4/1      b:c=1/4:1/5

a:b:c = 1/3:4/1:1/5 = (1/3)*60:(4/1)*60:(1/5)*60 = 20:15:12

1m+1.5m+2.5m=1000

5m=1000

m=200

(1/2:1/3:1/9)*18 = 9:6:2

34/(9+6+2)=34/17=2万

2*9=18万

正比例(量变比值一定,简称正比,是指两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数比值(或者说商)一定,这两种量就叫作成正比例的量,它们的关系叫作正比例关系。如2支笔8 元,7支多少钱?就有等式:2:7=8:X(这就是正比例),解这比例:X=7*8/2=28(元) 

反比例(量变乘积一定,指的是两种相关联的变量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,那么他们就叫做成反比例的量,他们的关系叫做反比例关系。反比例的例子 简介 1、百米赛跑,路程100米不变,速度和时间是反比例;2、排队做操,总人数不变,排队的行数和每行的人数是反比例


圆的面积和它的半径 A. 成正比例 B. 成反比例 C. 不成比例

S/r=πr, 虽然π是定量,但r是变量,所以圆周率×半径的积就不一定, 所以圆的面积和它的半径量变比值(πr)不一定不成正比例关系;Sr=πr^3,所以圆的面积和它的半径量变乘积πr^3)不一定不成反比例关系。

故选:C. 圆的面积只是与半径的平方成正比例关系,和半径不成比例关系

注意:(a+c) / (b+d)不能推出a/b = c/d,反之才可以。如:

(1+2) / (3+7)不能推出1/3 = 2/7,1/3 != 2/7

1.7绝对值

取并集。

x<1时】,y = 1-x+2-x = 3-2x,y = 【3-2x

1=<x<=2时】,y = x-1+2-x= 1,y = 【1

x>1时】,y = x-1+x-2 = 2x-3,y = 【2x-3

 ​​​​​​

第一步:找到临界点、1和-2。即 __-4____-3____-2____-1____0____1____2____3__

即X<-2、-2<=X<=1、X>1。

第二步:

X<-2:        (1-x) - |x - (-2)| < 2    =>    1-x - (-2 - x) < 2    =>    1-x+2+x < 2     3<2    不成立,所以!(x<-2)

-2<=X<=1:    1-x-(x+2) < 2    =>   1-x-x-2) < 2    =>    -2x-1<2    =>    -2x<3    =>    x>-(3/2)

所以-2<=X<=1时需要x>-1.5题干中不等式才成立

X>1:        x-1-x-2<2    =>   -3<2        成立,所以x>1可以使题干中不等式成立

综上所述:取x>-1.5、x>1的并集即可,所以x>-1.5

2022管综条件充分性判断真题:

由|x-2| - |x-3| = a,找到临界点2、3并解等式:

x<2    =>    a=-1

x>3    =>    a=1

2<=x<=3    =>    a=2x-5

关键一步,根据解析的等式/方程,画函数图像(a值相当于y轴刻度值):

当0<a<0.5(即y轴取0到0.5不包括0和0.5时),有唯一的x轴刻度值与a值对应。

当a=1时(即y轴取1时),没有唯一的x轴刻度值与a值对应,x可以取>=3的任意值,因此不能确定x是哪一个值。

故,第一个条件是充分的,第二个条件是不充分的。选A。

已知的3个公理:;√ab = √a√b;根号下的值>=0;

乍一看很复杂,其实:

|a-3| >= 0        

√3b+5 >= 0    4开方是±2,4的平方根表示法:±√4=±2,平方根又叫二次方根;4的算术平方根表示法:√4=2;

(5c-4)^2 >= 0

3个>=0的数相加 = 0,所以三个数一定都等于0。

a=3、b=-5/3、c=4/5

abc = -15/3*4/5 = -5*4/5 = -4

三种情况:x<-1时,最大值是-3;-1<=x<=2时,取值是[-3,3]最大值是3;x>2时,最大值是3

所以最大值是3

1.8浓度问题

方法1列方程,设需要x克:(300*95%+60%x)   /  (300+x)   =   75%

方法2交叉法(仅适用于浓度类似题型):

95%        |60-75|=15

        75%

60%        |90-75|=20

15/20  =>  3/4  【3:4即为95%浓度酒精和60%浓度酒精混合为75%浓度酒精的混合比例】

左图描述的是A、B溶液混合成28%浓度溶液配置的比例。

80g

浓度问题的类比问题:30人

方法1:最后的溶液质量不变还是100g,只需要获得最后的溶质多少g即可求出最后的盐水浓度。刚开始100g*80%=80g盐,然后倒出了80g*(40g/100g)= 80g*0.4 =32g盐,还剩48g盐,继续类推即可。

方法2:最后的溶液质量不变还是100g,溶液 = 溶质 / 溶度;因为溶质在每次倒出后都减少40%,也就是每次新溶质都是旧溶质*0.6;又因为溶液 = 溶质 / 溶度成正比例 且 每次倒出再倒满后溶液不变,所以溶质作为分子*0.6时,溶度作为分母也*0.6。所以反复三次后最终浓度是80%*0.6^3 = 0.8*0.6*0.6*0.6 = 0.48*0.36 = 17.28%

解方程消y即可得x:

5x+6y=7.7        5x+2y=5.6 => 15x+6y=16.8

15x+6y-5x-6y = 16.8-7.7        =>     10x=9.1        =>        x=0.91=91%   

方法1列方程:

设原来盐水xkg,每次加入ykg水,原来的溶质为zkg,则原来盐水浓度为z/x,且有:

3% = z / (x+y)        =>        z = (x+y)*0.03 = 0.03x+0.03y

2% = z / (x+2y)       =>       z = (x+2y)*0.02 = 0.02x+0.04y

即0.03x+0.03y = 0.02x+0.04y    =>   3x+3y = 2x+4y    =>   x=y

因为x=y且 z = 0.03x+0.03y,所以z = 0.06x,则原来盐水浓度为z/x = 0.06 = 6%

方法2比例(盐的质量即溶质是不变的):

第一次加水后浓度3%:当盐3kg时,盐水100kg        =>        当盐6kg时,盐水200kg

第二次加水后浓度2%:当盐2kg时,盐水100kg        =>        当盐6kg时,盐水300kg

因为盐的质量即溶质是不变的,所以每次加水300-200=100kg,所以加水前的盐水为100kg,则溶质是6kg/100kg=6%

1.9其他相关应用题

2.整式与分式

2.1十字相乘法

解得x=3或者x=-4/3

x = 2或3或-2或-3

2.2乘法公式

方法1

方法2

真题:

方法1:

(x+y)(x-y)-(x-y)+1

(x-y)(x+y-1)+1

方法2:

(1)x^2 - x^2-x+x+1 = 1

(2)(1-y)^2 - y^2 -1 + y + y + 1

1+y^2-2y -y^2-1+2y+1 = 1

2.3配方

        结果:x = (-b±√(b^2-4ac)) / (2a)

ax^2 + bx + c = 0        a(x^2 + (b/a)x) + c = 0        

a(x^2 + (b/a)x + b^2/(4a^2)) - b^2/(4a) + c = 0        a(x + b/(2a))^2 = (b^2 - 4ac)/(4a)

(x + b/(2a))^2 = (b^2 - 4ac)/(4a^2)       若要此方程有解,需要a != 0b^2 - 4ac >= 0

x+b/(2a) = ±√(b^2 - 4ac) / (2a)        x = (-b±√(b^2-4ac)) / (2a)

一次项系数一半的平方

x^2 - 5x -3 = 0        x^2 - 5x -3 + (5/2)^2 - (5/2)^2 = 0        (x-5/2)^2 - 3 - (5/2)^2 = 0

(x-5/2)^2 = 3 + 25/4        (x-5/2)^2 =  37/4        x-5/2 = ±√37/2        x = (5 ± √37)/2

x^2 - 2x + 1 + 1 = 0        (x-1)^2 = -1        无解、平方数不可能为负数 

化简:

√((√2^2 + √3^2) + 2√6)        √(√2^2 + √3^2 + 2√2√3)        √(√2+√3)^2        √2+√3

√(7-2*2√3)        √(7-2*√4*√3)        √(7-2*√12)         √(√3^2+√4^2 - 2*√12) 

√(√3^2+√4^2 - 2*√(3*4))         √(√3^2+√4^2 - 2*√3*√4))        √(√3-√4)^2  或者 √(√4-√3)^2

即√3-√4  或者 √4-√3

因为下的数字必须>=0,所以最终结果是√4-√3

结果5√2-7

且  x^2 + 1/x^2 = (x +1/x)^2 - 2

x^3 + 1/x^3 = x^3 + (1/x)^3

= (x + 1/x)(x^2 + 1/x^2 - 1) = 3(x^2 + 1/x^2 - 1)

= 3((x +1/x)^2 - 2 - 1)= 3(3^2-3)

= 3*6 = 18

推出x+1/x=3,求x^3 + 1/x^3,和上题一样,结果是18

2.4分式

a^m * a^n = a^(m+n)       a^m / a^n = a^(m-n)

(a^m)^n = a^(m*n)

以上为定理,请记住。

2.5工程问题

50个。

设工作量为1        甲班效率为1/12        乙班效率为1/15        甲乙共同效率1/12+1/15=3/20

已工作量为3/20 * 4天=3/5        剩余未完成工作量为1-3/5=2/5

工作时间=工作量/工作效率        (2/5) / (1/15) = 6天

方法1

设工作量为1,原工期为x

则原效率为1/x,之后效率为(1/x)*1.2即1.2/x,剩余工期为x-3-2即x-5天

原效率工作3天,之后效率工作x-5天

则(1/x)*3 + (1.2/x)*(x-5) = 1,解得x=15

方法2

设工作量为1,原效率为x  

则已完成工作量3x,剩余工作量1-3x,提升后的效率为1.2x,原计划工期为1/x天

(1-3x) / 1.2x = 原计划工期-3-2        (1-3x) / 1.2x = 1/x-3-2        解得x=15

3.简单函数

3.1一次函数

一次函数是数学中经常使用的一种函数形式,可以被用来描述线性关系,如速度与时间之间的关系。一次函数可以表示为y = mx + b的形式,其中m和b是常数

3.2二次函数

函数图像是抛物曲线形式,描述非线性关系。

对称轴是x = -b/(2a),可根据对称轴x值(顶点坐标的x值)求出y值(顶点坐标的y值)。

a>0时抛物线开口向上,a<0时抛物线开口向下

c值决定抛物线与y轴的交点值

零点的概念:函数值y=0时,x的值即为零点。二次函数的零点个数(2或者1或者0)

△ = b^2-4ac        

△>0时,抛物线与x轴2个交点,ax^2 + bx + c = 0有两个不同的根/解

△=0时,抛物线与x轴1个交点,ax^2 + bx + c = 0有两个相同的根/解

△<0时,抛物线与x轴0个交点,ax^2 + bx + c = 0无解/根

a<0时,开口向下,y必然有<0的情况

a>0 且 △ = b^2-4ac < 0

韦达定理变换 

x1^2 + x2^2 = (x1 + x2)^2 - 2x1x2 = (-b/a)^2 - 2c/a

|x1-x2| = √(x1 - x2)^2 = √((x1+x2)^2 - 4x1x2) √((-b/a)^2 - 4c/a)

 

 

3.3不等式

均值不等式        推导基础 (a-b)^2 >= 0        a^2 + b^2 - 2ab >= 0        a^2 + b^2 >= 2ab

设a^2 = x,b^2 = y        则x >= 0,y >= 0            且a = √x,b = √y

因为a^2 + b^2 >= 2ab

所以x + y >= 2√(xy)        其中x >= 0,y >= 0        且x=y时,(a-b)^2 >= 0取最小值 即 x + y >= 2√(xy) 取最小值,若x != y则x + y >= 2√(xy)不能取等!

对勾函数值永远大于等于2。

选B。

 

3.4集合

区间法 和 图示法

3 <= x < 10

区间法:        [3, 10)

图示法:        空心、实心、阴影、闭口的/左开口的/右开口的/左右开口的

  

如果集合A是集合B的子集,并且集合B不是集合A的子集,那么集合A叫做集合B的真子集。

空集是任意集合的子集。

并集:

交集:

全集:

一般的,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U

补集:

若给定全集U,有A⊆U,则AU中的相对补集称为A绝对补集(或简称补集),写作∁UA。

 

3.5应用题-容斥问题

34人。


4.排列组合

1.加法与乘法原理

2.排列与组合


...ing 

3.均匀分组问题

4.插空法

5.隔板法

6.奥数专题

7.数据描述

5.平面几何

1.线与角

2.三角形基础

3.三角形全等

4.特殊三角形

5.相似三角形

6.平行四边形

7.矩形菱形正方形

8.圆

9.圆的切线

10.圆的考点补充

二、逻辑

1.形式逻辑

2.论证逻辑

三、写作

1.小作文

2.论说文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值