【TEE】DarKnight: An Accelerated Framework for Privacy and Integrity Preserving Deep Learning Using Tr

DarKnight利用可信执行环境(TEE)和GPU的协作,通过矩阵掩码保护数据隐私,实现高效性能。它针对云环境中潜在的安全威胁,提供数据隐私和计算完整性的保护,实验显示有显著的加速效果且保持准确性。
摘要由CSDN通过智能技术生成

DarKnight: An Accelerated Framework for Privacy and Integrity Preserving Deep Learning Using Trusted Hardware MICRO 2021

DarKnight 依赖于可信执行环境 (TEE) 和加速器之间的协同执行,其中 TEE 提供隐私和完整性验证,而加速器执行大部分线性代数计算以优化性能。

DarKnight 使用基于矩阵掩码的定制数据编码策略在 TEE 中创建输入混淆。然后,混淆数据被卸载到 GPU 以进行快速线性代数计算。DarKnight 的数据混淆策略在云服务器中提供可证明的数据隐私和计算完整性。使用支持 Intel SGX 的 CPU 实现了 DarKnight,以执行矩阵掩码和非线性 DNN 操作,同时使用 Nvidia GPU 加速线性操作。

工作重点是防止一部分机器可能受到损害的情况,而不是完全不受信任的云提供商,即来自云提供商的每台计算机都受到损害和串通。目标是保护数据隐私和计算完整性,同时仍允许使用不受信任的云系统。DarKnight 专注于暴露用于训练或推理的数据集的攻击,以及修改不受信任硬件上的计算结果的攻击。
DarKnight整体框架
关键见解:DarKnight 隐私保护方案背后的主要思想是计算量最大的运算符(例如卷积)是双线性的。因此,DarKnight 没有要求 GPU 计算暴露输入的 ⟨W, x(i)⟩,而是使用矩阵掩蔽来线性组合输入并向其添加随机噪声。由于双线性特性,如果执行了 K 个不同的线性计算,则可以恢复对 K 个屏蔽输入的任何线性操作。
和现有隐私保护机器学习方法的对比
前向传递的编码:
在这里插入图片描述
前向传递解码:
在这里插入图片描述
反向传播编码:
在这里插入图片描述
在这里插入图片描述
反向传播解码:
在这里插入图片描述
DarKnight 为隐私保护提供了强大的加密保证,而不是仅仅依赖可能受到损害的经验量化。实文章大部分篇幅在讨论前向后向的encoding和decoding以及正确性证明,并考虑在GPU受损的情况下的计算完整性。实验结果表明,与完全在 SGX TEE 中实施的基线相比,存在平均 6.5 倍的训练加速和 12.5 倍的推理加速,准确性没有下降。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值