数据结构笔记NO.3

本文是关于数据结构中树与二叉树的知识笔记,介绍了树的基本概念,包括树的定义、特点、基本术语,如结点的度、层次、深度和高度,以及有序树、无序树、路径和森林等概念。此外,还探讨了树的性质,如结点数与度数的关系,以及不同高度树的结点数量。
摘要由CSDN通过智能技术生成

第五章、树与二叉树

一、知识框架
在这里插入图片描述
二、树的基本概念

1、树的定义

树是 n (n ≥ 0) 个结点的有限集。当n = 0时,称为空树。在任意一棵非空树中应满足:

  • 1)有且仅有一个特定的称为 的结点。
  • 2)当n > 1时,其余结点可分为m (m > 0) 个互不相交的有限集T1,T2,···,Tm,其中每个集合本身又是一棵树,并且称为根的子树

显然,树的定义是递归的,即在树的定义中又用到了其自身,树是一种递归的数据结构。

树作为一种逻辑结构,同时也是一种分层结构,具有以下两个特点:

  • 1)树的根结点没有前驱,除根结点外的所有结点有且只有一个前驱。
  • 2)树中所有结点可以有零个或多个后继。

树适合于表示具有层次结构的数据。树中的某个结点(除根结点外)最多只和上一层的一个结点(即其父结点)有直接关系,根结点没有直接上层结点,因此在n个结点的树中有n-1条边。而树中每个结点与其下一层的零个或多个结点(即其子女结点)有直接关系。

2、基本术语

下面结合下图中的树来说明一些基本术语和概念。
在这里插入图片描述

  • 1)考虑结点 K。根 A 到结点 K 的唯一路径上的任意结点,称为结点 K祖先。如结点 B 是结点 K 的祖先,而结点 K 是结点 B子孙。路径上最接近结点 K 的结点 E 称为 K双亲
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值