P2345 奶牛集会(树状数组/CDQ分治)

题目描述

约翰的N 头奶牛每年都会参加“哞哞大会”。哞哞大会是奶牛界的盛事。集会上的活动很多,比如堆干草,跨栅栏,摸牛仔的屁股等等。它们参加活动时会聚在一起,第i 头奶牛的坐标为Xi,没有两头奶牛的坐标是相同的。奶牛们的叫声很大,第i 头和第j 头奶牛交流,会发出max{Vi; Vj}×|Xi − Xj | 的音量,其中Vi 和Vj 分别是第i 头和第j 头奶牛的听力。

假设每对奶牛之间同时都在说话,请计算所有奶牛产生的音量之和是多少。

输入格式

• 第一行:单个整数N,1 ≤ N ≤ 20000

• 第二行到第N + 1 行:第i + 1 行有两个整数Vi 和Xi,1 ≤ Vi ≤ 20000; 1 ≤ Xi ≤ 20000

输出格式

• 单个整数:表示所有奶牛产生的音量之和


题解:
我们可以先按v排序,然后用树状数组维护比该牛x小的数的个数,以及它们的和

开两个树状数组,一个维护比当前牛x小的数的个数,一个维护比牛x小的数的总和

然后就可以化简绝对值公式了,加入当前牛造成的贡献就为:

a [ i ] . v ∗ ( l ∗ a [ i ] . x − l s u m + r s u m − r ∗ a [ i ] . x ) a[i].v*(l*a[i].x-lsum+rsum-r*a[i].x) a[i].v(la[i].xlsum+rsumra[i].x)


AC代码:

#pragma GCC optimize(2)
#include<bits/stdc++.h>
#include<ext/rope>
#define int long long
using namespace std;
using namespace __gnu_cxx;
typedef long long LL;
const int MAXN = 20010;
const int MOD = 1e9+7;
const int INF = 0x3f3f3f3f;
int n,res;
struct node{ int v,x; }a[MAXN];
inline bool cmp(node a,node b){ return a.v<b.v; }
struct BIT{
    int bit[MAXN];
    inline int lowbit(int x){ return x&-x; }
    inline void add(int x,int val){ for(int i=x;i<=20000;i+=lowbit(i)) bit[i]+=val; }
    inline int query(int x,int res=0){ for(int i=x;i;i-=lowbit(i)) res+=bit[i]; return res; }
}t1,t2;
signed main(){
#ifndef ONLINE_JUDGE
    freopen("C:\\Users\\Administrator\\Desktop\\in.txt","r",stdin);
#endif // ONLINE_JUDGE
    cin>>n;
    for(int i=1;i<=n;i++) cin>>a[i].v>>a[i].x;
    sort(a+1,a+n+1,cmp);
    for(int i=1;i<=n;i++){
        int l=t1.query(a[i].x-1),r=t1.query(20000)-t1.query(a[i].x);
        int lsum=t2.query(a[i].x-1),rsum=t2.query(20000)-t2.query(a[i].x);
        res += a[i].v*(l*a[i].x-lsum+rsum-r*a[i].x);
        t1.add(a[i].x,1);
        t2.add(a[i].x,a[i].x);
    }
    cout<<res<<'\n';
    return 0;
}

AC代码(CDQ分治):

#pragma GCC optimize(2)
#include<bits/stdc++.h>
#include<ext/rope>
#define int long long
using namespace std;
using namespace __gnu_cxx;
typedef long long LL;
const int MAXN = 20010;
const int MOD = 1e9+7;
const int INF = 0x3f3f3f3f;
int n,res;
struct node{ int v,x; }a[MAXN],b[MAXN];
inline bool cmp(node a,node b){ return a.v<b.v; }
inline void CDQ(int l,int r){
    if(l==r) return; int mid=(l+r)>>1;
    int sum1=0,sum2=0,tot=l;//
    CDQ(l,mid); CDQ(mid+1,r);
    for(int i=l;i<=mid;i++) sum1+=a[i].x;
    for(int i=mid+1;i<=r;i++){
        while(tot<=mid && a[tot].x<a[i].x){
        //tot为划分的中点,其左边都小于x,右边都大于x
            sum2 += a[tot].x; sum1 -= a[tot].x; tot++;
        }
        res += a[i].v*(a[i].x*(tot-l)-sum2-a[i].x*(mid-tot+1)+sum1);
    }
    int p=l,q=mid+1,cnt=l;
    while(p<=mid && q<=r){
        if(a[p].x<=a[q].x) b[cnt++]=a[p++];
        else b[cnt++]=a[q++];
    }
    while(p<=mid) b[cnt++]=a[p++];
    while(q<=r) b[cnt++]=a[q++];
    for(int i=l;i<=r;i++) a[i]=b[i];
}
signed main(){
#ifndef ONLINE_JUDGE
    freopen("C:\\Users\\Administrator\\Desktop\\in.txt","r",stdin);
#endif // ONLINE_JUDGE
    cin>>n;
    for(int i=1;i<=n;i++) cin>>a[i].v>>a[i].x;
    sort(a+1,a+n+1,cmp);
    CDQ(1,n);
    cout<<res<<endl;
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值