题意:
给出n个点,m条单向边的有向图,有s,e,k,T,表示从s到e的第k短路是否小于T,若是,输出"yareyaredawa" 不含引号,不是则输出"Whitesnake!"不含引号
题解:
又捕捉到一道裸题
有向图直接建反边来预处理h(i),h(i)为终点到i点的最短距离,然后套一下A*就OK了
AC代码:
#pragma GCC optimize(2)
#include<bits/stdc++.h>
#include<ext/rope>
using namespace std;
using namespace __gnu_cxx;
#define LL long long
const int MAXN = 1e5+50;
const int MOD = 1e9+7;
const int INF = 1e9;
struct Node{ int v,w,nxt; }edge[MAXN<<1],redge[MAXN<<1];
int n,m,s,t,k,lim,tot,rtot,dis[MAXN],head[MAXN],rhead[MAXN],vis[MAXN];
inline void add(int u,int v,int w){
edge[++tot].v=v; edge[tot].w=w; edge[tot].nxt=head[u]; head[u]=tot;
redge[++rtot].v=u; redge[rtot].w=w; redge[rtot].nxt=rhead[v]; rhead[v]=rtot;
}
struct A_star{
int v,val;
bool operator < (const A_star &x) const{ return x.val+dis[x.v]<val+dis[v]; }
};
inline void SPFA(){
for(int i=1;i<=n;i++) dis[i]=INF,vis[i]=0;
dis[t]=0,vis[t]=1;
queue<int> que; que.push(t);
while(!que.empty()){
int u=que.front(); que.pop();
vis[u]=0;
for(int i=rhead[u];i;i=redge[i].nxt){
int v=redge[i].v,w=redge[i].w;
if(dis[v]>dis[u]+w){
dis[v]=dis[u]+w;
if(!vis[v]) vis[v]=1,que.push(v);
}
}
}
}
inline int BFS(){
if(dis[s]==INF) return -1;
int kth=0;
priority_queue<A_star> que;
que.push({s,0});
while(!que.empty()){
A_star u=que.top(); que.pop();
if(u.v==t) kth++;
if(kth==k) return u.val;
for(int i=head[u.v];i;i=edge[i].nxt){
que.push({edge[i].v,u.val+edge[i].w});
}
}
return -1;
}
signed main(){
while(~scanf("%d%d",&n,&m)){
scanf("%d%d%d%d",&s,&t,&k,&lim);
memset(head,0,sizeof(head)); memset(rhead,0,sizeof(rhead));
tot=rtot=0;
for(int i=1,u,v,w;i<=m;i++) scanf("%d%d%d",&u,&v,&w),add(u,v,w);
SPFA(); int res=BFS();
if(res==-1 || res>lim) puts("Whitesnake!");
else puts("yareyaredawa");
}
return 0;
}