1. 计算阶乘
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <queue>
using namespace std;
int f(int n) // 递归计算阶乘
{
if (n == 0)
{
return 1;
}
return f(n-1) * n;
}
int main()
{
int n;
scanf("%d", &n);
printf("%d\n", f(n));
return 0;
}
2. 计算Fibonacci第n项
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <queue>
using namespace std;
int f(int n) // 递归Fibonacci数列第N项
{
if (n == 0 || n == 1)
{
return 1;
}
return f(n-1) + f(n-2);
}
int main()
{
int n;
scanf("%d", &n);
printf("%d\n", f(n));
return 0;
}
3. 输出全排列(Full Permutation)
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <queue>
using namespace std;
const int maxn = 11;
// p[]表示当前排列,hashTable[i]记录i是否存在于当前排列p[]中
int n, p[maxn], hashTable[maxn] = {false};
void generateP(int index) // index表示排列中当前位置
{
if (index == n + 1) // 递归边界,处理完n位
{
for (int i= 1; i <= n; i++)
{
printf("%d ", p[i]);
}
printf("\n");
return;
}
for (int i = 1; i <= n; i++) // 从1~n枚举,填入排列
{
if (hashTable[i] == false) // 排列中没有i
{
p[index] = i; // 将i存入排列
hashTable[i] = true; // 改变i的状态
generateP(index+1); // 处理下一个位置index+1
hashTable[i] = false; // 恢复i的状态
}
}
}
int main()
{
scanf("%d", &n);
generateP(1); // 从第一个位置开始处理
return 0;
}
4. N皇后问题(全排列,暴力)
思路:
n个皇后在n*n的棋盘上既不能同行,也不能同列,还不能在一条对角线上。
- 首先,我们保证n个皇后分别在n列上。(保证不在同一列)
- 然后,对这n个皇后的行号进行全排列。(保证不在同一行)
- 最后,排除掉在同一对角线的情况。(保证不在同一对角线)
判断在同一对角线的方法如下:
\这样的斜线,同一对角线,那么x1-y1=x2-y2;
/这样的斜线,同一对角线,那么x1+y1=x2+y2;
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <queue>
using namespace std;
const int maxn = 11;
int cnt = 0, n;
// 若p[i] = x,则i代表皇后所在列,x代表皇后所在行
// hashTable[x] = true,代表x已经进入排列p[]中
int p[maxn], hashTable[maxn] = {false};
void generateP(int index)
{
if (n+1 == index)
{
bool flag = true;
for (int i = 1; i <= n; i++)
{
for (int j = i+1; j <= n; j++)
{
if (abs(i - j) == abs(p[i] - p[j])) // 判断是否在同一对角线
{
flag = false;
break;
}
}
}
if (flag)
{
cnt++;
}
return;
}
for (int i = 1; i <= n; i++) // 对行号进行全排列
{
if (hashTable[i] == false)
{
p[index] = i;
hashTable[i] = true;
generateP(index+1);
hashTable[i] = false;
}
}
}
int main()
{
scanf("%d", &n);
generateP(1); // 从第一个位置开始处理
printf("%d\n", cnt);
return 0;
}
5. N皇后问题优化(回溯算法)
回溯法:一般来说,如果在到达递归边界前的某层,由于一些事实导致已经不需要往任何一个子问题递归,就可以直接返回上一层。
思路:
在进行第index列,第i行的皇后放置时,将其与之前放置的皇后们进行冲突判定。若冲突,则直接判断下一行。
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <queue>
using namespace std;
const int maxn = 11;
int cnt = 0, n;
int p[maxn], hashTable[maxn] = {false};
void generateP(int index)
{
if (index == n+1) // 前N行判断完,递归结束
{
cnt++;
return;
}
// 对N个行号进行全排列
for (int i = 1; i <= n; i++)
{
// 若第i行没有放置皇后,则进行处理
if (hashTable[i] == false)
{
bool flag = true;
for (int j = 1; j < index; j++) // 枚举前面已经排好的列
{
// 若第index列,i行的皇后与之前的某个皇后冲突,则直接判断下行
if (abs(index - j) == abs(i - p[j]))
{
flag = false;
break;
}
}
if (flag)
{
p[index] = i;
hashTable[i] = true;
generateP(index+1);
hashTable[i] = false;
}
}
}
}
int main()
{
scanf("%d", &n);
generateP(1); // 从第一个位置开始处理
printf("%d\n", cnt);
return 0;
}