columns overlap but no suffix specified: Index([‘data1‘, ‘data2‘], dtype=‘object‘)解决方法

本文详细解析了在使用Pandas进行DataFrame join操作时遇到的columnsoverlapbutnosuffixspecified错误,阐述了错误原因在于列名重复,并提供了两种解决方法:一是通过修改列名,二是使用add_prefix为列名添加前缀。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

记录一下错误:

columns overlap but no suffix specified: Index(['data1', 'data2'], dtype='object')

首先说明该错误是由于使用pandas中的join方法连接两个DataFrame出现的错误。
错误原因:列名重复
解决方法:修改列名,使其不重名

df = pd.DataFrame({'data1':np.random.rand(5),
                  'data2':np.random.rand(5),
                  'key1':list('aabba'),
                  'key2':['one','two','one','two','one']})
print(df)

# 如果要将df分组后求其平均数,并添加到末尾,有以下两种方法
# 1. 常规方法
df_mean = df.groupby('key1').mean()
print(df_mean)
print(pd.merge(df, df_mean, how='inner', left_on='key1', right_index=True))

# 2.用transform
a = df.groupby('key1').transform(np.mean)
print(a)
print(df.join(a, how='inner'))

执行最后一句语句时报错columns overlap but no suffix specified: Index(['data1', 'data2'], dtype='object'),然后发现是两个DataFrame 的列名重复了,join不会像merge一样,merge会将重名的列明自动加上_x,_y加以区分,而join直接报错。
所以,我们的解决方法是修改其列明就好了。

常用的有两种方法:
1.用column修改列名

a = df.groupby('key1').transform(np.mean)
print(a)
a.columns = ['a', 'b']
print(df.join(a, how='inner'))

2.用add_profix为列名添加指定字符串前缀

a = df.groupby('key1').transform(np.mean).add_prefix('mean_')
print(a)
print(df.join(a, how='inner'))

这里是引用

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ElegantCodingWH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值