题目描述
试计算在区间 111 到 nn n的所有整数中,数字x(0≤x≤9) x(0 ≤ x ≤ 9)x(0≤x≤9)共出现了多少次?例如,在 111到11 11 11中,即在 1,2,3,4,5,6,7,8,9,10,111,2,3,4,5,6,7,8,9,10,111,2,3,4,5,6,7,8,9,10,11 中,数字 111 出现了 444 次。
输入输出格式
输入格式:
222个整数n,xn,xn,x,之间用一个空格隔开。
输出格式:
111个整数,表示xxx出现的次数。
输入输出样例
输入样例#1:
复制
11 1
输出样例#1:
复制
4
这题是noip2013普及组第一题,难度肯定不大,nlog10n的算法不难想出,这里不再说明。
在真正的比赛中,只要想到能ac的算法就可以,但是在练习中还是要锻炼自己的思维,多想想更优的算法。
不难发现,即使不用计算机,答案也很容易求出,如:
n=728,x=7
可以按照这样的思路:
个位7:73个 7,17,…,727
十位7:70个 70~ 79,170~ 179,…,670~679
百位7:29个 700~728
答案是172
这样,就不难写出log10n的算法,这是一个巨大的改进!