洛谷训练

题目描述
试计算在区间 111 到 nn n的所有整数中,数字x(0≤x≤9) x(0 ≤ x ≤ 9)x(0≤x≤9)共出现了多少次?例如,在 111到11 11 11中,即在 1,2,3,4,5,6,7,8,9,10,111,2,3,4,5,6,7,8,9,10,111,2,3,4,5,6,7,8,9,10,11 中,数字 111 出现了 444 次。
输入输出格式
输入格式:

222个整数n,xn,xn,x,之间用一个空格隔开。
输出格式:

111个整数,表示xxx出现的次数。
输入输出样例

输入样例#1:
复制
11 1

输出样例#1:
复制
4

这题是noip2013普及组第一题,难度肯定不大,nlog10n的算法不难想出,这里不再说明。
在真正的比赛中,只要想到能ac的算法就可以,但是在练习中还是要锻炼自己的思维,多想想更优的算法。
不难发现,即使不用计算机,答案也很容易求出,如:
n=728,x=7
可以按照这样的思路:
个位7:73个 7,17,…,727
十位7:70个 70~ 79,170~ 179,…,670~679
百位7:29个 700~728
答案是172
这样,就不难写出log10n的算法,这是一个巨大的改进!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值