python--pandas与数据处理

本文介绍了Python的Pandas库中Series类型数据的处理,包括其index和values属性,如何将其视为类似字典的数据结构。讨论了Series对象的元素提取和切片操作,特别是利用位置和标签进行的索引。还提到了时间序列的特点,如使用部分标签索引,以及介绍了滞后和超前操作在时间序列分析中的应用。
摘要由CSDN通过智能技术生成

series类型数据
index:保存标签信息,是从numpy数组继承的index对象
values:保存值,是一位数组对象
在这里插入图片描述
我们可以吧Series对象的index看做key Series对象的value看做key的value 这样就可以看做字典
在这里插入图片描述
如果只制定value的值没有Index的值,则会默认产生从o开始 步长为1,整型数组
在这里插入图片描述
series对象的元素提取切片
在这里插入图片描述
利用位置或者标签提取元素和切片
对于Series来说最大的特点是除了位置索引之外还有标签索引来查找元素

在这里插入图片描述
切片
在这里插入图片描述
时间序列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值