Collision Ball Game-计算几何基础题

博客围绕碰撞球游戏展开,作者曾想构建问题描述游戏全过程但太难,此次简化问题。假设游戏在特定三角形中,给出球的初始和最终位置,要求根据物理碰撞定律计算球经过的距离,还给出输入输出格式及示例。

Collision ball game is one of my favorite game when I was young. I was so fond of this game that I nearly decided to be a physical scientist (But I am not now). Firstly I wanted to construct a problem to describe the whole process of this game. But it is too difficult for me and I hate being bsed by others for wrong data.

So I decide to make it easier, but maybe I will construct one next time.

Assume the game is in a triangle with the lower-right angle k (in degree) and height h. (see the picture)

 

 

The ball's initial place is in (0, a) and it eventually arrives at (b, 0) with collising the bevel edge only once. The two points (0, a) and (b, 0) will always be on the edge of the triangle.

You are to calculate the distance the ball pass. The process of collision obey the physical law. The angle of incidence equals to the angle of reflection.

 

Input

 

The input contains multiple test cases. Each test cases contain four number (all double). The first line is the angle of the triangle k (in degree, 0 < k < 90). The second line is the height h (h > 0). The third line is a. The fourth line is b (a, b >= 0).

Process to the end-of-file.

 

Output

 

For each test case print a single line that contains the distance the ball pass (rounded to 2 decimal places).

 

Sample Input

 

45
2
1
1

30
2
1
2.3094

 

Sample Output

 

2.00
2.89
#include<iostream>
#include<cmath>
#include<cstdio>
using namespace std;
#define pi acos(-1)
int main()
{
	double a,b,k,h;
	while(~scanf("%lf %lf %lf %lf",&k,&h,&a,&b))
	{
		//double s = 2*cos(k)*(h-a);
		double y = 2*cos(k*pi/180)*(h-a)*cos(k*pi/180)+a;
		double x = 2*cos(k*pi/180)*(h-a)*sin(k*pi/180);
		double u =sqrt((b-x)*(b-x)+y*y);
		printf("%.2lf\n",u);		
	}
	return 0;
}

 

(Mathcad+Simulink仿真)基于扩展描述函数法的LLC谐振变换器小信号分析设计内容概要:本文围绕“基于扩展描述函数法的LLC谐振变换器小信号分析设计”展开,结合Mathcad与Simulink仿真工具,系统研究LLC谐振变换器的小信号建模方法。重点利用扩展描述函数法(Extended Describing Function Method, EDF)对LLC变换器在非线性工作条件下的动态特性进行线性化近似,建立适用于频域分析的小信号模型,并通过Simulink仿真验证模型准确性。文中详细阐述了建模理论推导过程,包括谐振腔参数计算、开关网络等效处理、工作模态分析及频响特性提取,最后通过仿真对比验证了该方法在稳定性分析与控制器设计中的有效性。; 适合人群:具备电力电子、自动控制理论基础,熟悉Matlab/Simulink和Mathcad工具,从事开关电源、DC-DC变换器或新能源变换系统研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握LLC谐振变换器的小信号建模难点与解决方案;②学习扩展描述函数法在非线性系统线性化中的应用;③实现高频LLC变换器的环路补偿与稳定性设计;④结合Mathcad进行公式推导与参数计算,利用Simulink完成动态仿真验证。; 阅读建议:建议读者结合Mathcad中的数学推导与Simulink仿真模型同步学习,重点关注EDF法的假设条件与适用范围,动手复现建模步骤和频域分析过程,以深入理解LLC变换器的小信号行为及其在实际控制系统设计中的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-lyslyslys

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值