题目描述
在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
示例 1:输入:
[ [1,3,1],
[1,5,1],
[4,2,1] ]
输出: 12
解释: 路径 1→3→5→2→1可以拿到最多价值的礼物
提示:
0 < grid.length <= 200
0 < grid[0].length <= 200
方法一(动态规划)
1.解题思路
- 首先确定dp数组的含义,dp[i][j]表示走到i,j对应的格子时所能获得的最大礼物数
- 然后给dp数组赋初值,左上角的格子自然只能获得当前格子的礼物,除左上角的第一行或第一列,则等于上一个格子的dp加上 当前格子的礼物
- 状态转移方程为:dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1])+grid[i][j],即左边或上边的最大礼物数加上当前的最大礼物数
- 右下角格子对应的值即为所求的最大礼物
2.代码实现
class Solution {
public int maxValue(int[][] grid) {
int m=grid.length;
int n=grid[0].length;
int[][] dp=new int[m][n];
dp[0][0]=grid[0][0];
for(int i=1;i<m;i++){
dp[i][0]=dp[i-1][0]+grid[i][0];
}
for(int j=1;j<n;j++){
dp[0][j]=dp[0][j-1]+grid[0][j];
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1])+grid[i][j];
}
}
return dp[m-1][n-1];
}
}
3.复杂度分析
- 时间复杂度:需要遍历整个矩阵,所以时间复杂度为O(m*n)。
- 空间复杂度:需要m*n大小的dp数组,所以空间复杂度为O(m*n)。
方法二(原地dp)
1.解题思路
可以直接利用grid矩阵充当dp数组,节省内存空间
2.代码实现
class Solution {
public int maxValue(int[][] grid) {
int m=grid.length;
int n=grid[0].length;
for(int i=1;i<m;i++){
grid[i][0]+=grid[i-1][0];
}
for(int j=1;j<n;j++){
grid[0][j]+=grid[0][j-1];
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
grid[i][j]+=Math.max(grid[i-1][j],grid[i][j-1]);
}
}
return grid[m-1][n-1];
}
}
3.复杂度分析
- 时间复杂度:需要遍历整个矩阵,所以时间复杂度为O(m*n)。
- 空间复杂度:不需要额外的内存空间,所以空间复杂度为O(1)。
剑指offer全集入口: 请戳这里