任选两个自然数,它们互质的概率是多少?
它就是
s
=
2
s = 2
s=2时欧拉乘积公式右边的连乘的倒数,因此它等于
s
=
2
s = 2
s=2时欧拉乘积公式左边的连加的倒数,即
1
/
ζ
(
2
)
1/ζ(2)
1/ζ(2)。而
ζ
(
2
)
=
π
2
/
6
ζ(2) = π^2/6
ζ(2)=π2/6,因此这个概率等于
6
/
π
2
≈
0.6079
6/π^2 ≈ 0.6079
6/π2≈0.6079。同样的,三个自然数互质的概率是
1
/
ζ
(
3
)
≈
0.8319
1/ζ(3) ≈ 0.8319
1/ζ(3)≈0.8319,四个自然数互质的概率是
1
/
ζ
(
4
)
≈
0.9239
1/ζ(4) ≈ 0.9239
1/ζ(4)≈0.9239。
欧拉乘积公式:
∑
n
n
−
s
=
∏
p
(
1
−
p
−
s
)
−
1
\sum_nn^{−s}= \prod_p(1−p^{−s}) −1
n∑n−s=p∏(1−p−s)−1