ζ函数的那些事

ζ \zeta ζ函数

著名的欧拉巨佬通过某些玄学方法得出了一个看似违背常理的式子:
1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + ⋯ = π 2 6 \dfrac1{1^2}+\dfrac1{2^2}+\dfrac1{3^2}+\dfrac1{4^2}+\cdots=\dfrac{\pi^2}6 121+221+321+421+=6π2
所有正整数倒数的平方和居然是一个带有 π 2 \pi^2 π2这个奇怪数字的数。所以,数学家黎曼就根据这个拓展出了 ζ \zeta ζ函数,也提出了黎曼猜想(虽然本蒟蒻看不懂)。 ζ \zeta ζ函数的定义是:
ζ ( x ) = ∑ n = 1 ∞ ( 1 n x ) = ∑ n = 1 ∞ n − x \zeta(x)=\sum\limits_{n=1}^\infty(\dfrac1{n^x})=\sum\limits_{n=1}^{\infty}n^{-x} ζ(x)=n=1(nx1)=n=1nx
说的通俗些就是这个式子:
ζ ( x ) = 1 1 x + 1 2 x + 1 3 x + 1 4 x + ⋯ \zeta(x)=\dfrac1{1^x}+\dfrac1{2^x}+\dfrac1{3^x}+\dfrac1{4^x}+\cdots ζ(x)=1x1+2x1+3x1+4x1+
我们可以通过不等式的方法证明:
ζ ( 1 ) = 1 1 + 1 2 + 1 3 + 1 4 + ⋯ = + ∞ \zeta(1)=\dfrac11+\dfrac12+\dfrac13+\dfrac14+\cdots=+\infty ζ(1)=11+21+31+41+=+
欧拉还为我们证明了
ζ ( 2 ) = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + ⋯ = π 2 6 \zeta(2)=\dfrac1{1^2}+\dfrac1{2^2}+\dfrac1{3^2}+\dfrac1{4^2}+\cdots=\dfrac{\pi^2}6 ζ(2)=121+221+321+421+=6π2
我们还可以证明:
ζ ( − 1 ) = 1 + 2 + 3 + 4 + ⋯ = − 1 12 \zeta(-1)=1+2+3+4+\cdots=-\dfrac1{12} ζ(1)=1+2+3+4+=121
ζ ( − 2 ) = 1 2 + 2 2 + 3 2 + 4 2 + ⋯ = 0 \zeta(-2)=1^2+2^2+3^2+4^2+\cdots=0 ζ(2)=12+22+32+42+=0
what?你有没有搞错? 1 + 2 + 3 + 4 + ⋯ 1+2+3+4+\cdots 1+2+3+4+明显是一个正数,怎么会是 − 1 12 -\dfrac1{12} 121呢?

好吧,我就在这里给出证明:

假设 f ( x ) = x + 2 x 2 + 3 x 3 + 4 x 4 + ⋯ f(x)=x+2x^2+3x^3+4x^4+\cdots f(x)=x+2x2+3x3+4x

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值