学习自旋电子学的笔记07:根据微磁学基本能量密度公式推导有效场

阅读说明:由于CSDN自带的Markdown编辑器目前对大篇幅KATEX公式的支持性不太好,导致文章内容有了字数限制,一旦超过字数限制,就不能正常保存和发布了。所以,我将笔记07的部分内容转换为了图片的形式,方便大家阅读!原始的.md文档,里面的公式使用的是KATEX格式,和本文的PDF版本有需要的可以点击下载



雁来音信无凭,路遥归梦难成。----李煜《清平乐别来春半》


########
本文链接:https://blog.csdn.net/qq_43572058/article/details/126234976
CSDN@搬砖工人_0803号
########

前言

在笔记06中为大家推荐了“ubermag”官网上的有关微磁学公式的推导笔记,按照老辈人的说法,微磁学相关公式的推导应该在我们入门后两个月内学会,但并不是每一个人都有着基本的数学素养,有的人面对这些数学式子就是头晕,比如我,,,好在近期闲来无事想着动纸笔比划一下,遇到的一些陌生的名词,陌生的导数,卡住的推导步骤等都会去网上翻一翻,于是总归学会了一点三脚猫的功夫了。

本文的内容就是根据几个微磁学基本能量密度公式来推导其有效场,这几个微磁学基本能量包括:交换能,塞曼能,界面DMI能,体DMI能,单轴各向异性能,立方各向异性能。这几个能量的能量密度公式是已知的,利用有效场的公式:

H e f f → = 1 − u 0 M s δ E a n y δ m → \overrightarrow{H_{eff}} =\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E_{any}}}{\delta{\overrightarrow{m}}} Heff =u0Ms1δm δEany

即可推导出每一项能量对应的有效场。式中: u 0 , M s u_0,M_s u0Ms 分别表示真空磁导率和材料的饱和磁化强度; m → = m ( r ⃗ ) → = M ( r ⃗ ) → M s \overrightarrow{m}=\overrightarrow{m(\vec{r})}=\frac{\overrightarrow{M(\vec{r})}}{M_s} m =m(r ) =MsM(r ) 表示单位磁化强度(矢量场); E a n y E_{any} Eany 表示以上能量的能量密度(标量场);符号 δ \delta δ 表示变分算子。

这里涉及到“变分”这个概念,我自己目前也不是很明白,但从网上查了一些言论描述如下:
F = F ( y ) , y = y ( x ) F=F(y),y=y(x) F=F(y)y=y(x),有所谓的 函数的函数的导数 表示为:
F y ′ = δ F δ y F^{\prime}_y=\frac{\delta{F}}{\delta{y}} Fy=δyδF

δ F δ y = d F d y 或 ∂ F ∂ y \frac{\delta{F}}{\delta{y}}=\frac{dF}{dy}或\frac{\partial{F}}{\partial{y}} δyδF=dydFyF

于是,有效场的式子变为了能量密度(标量场)对单位磁化强度(矢量场)求偏导:

H e f f → = 1 − u 0 M s ∂ E a n y ∂ m → \overrightarrow{H_{eff}} =\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E_{any}}}{\partial{\overrightarrow{m}}} Heff =u0Ms1m Eany

大家对这个式子都非常熟悉了,在大部分微磁学文章中,一般这个式子会出现在LLG方程的后面。不过,此处又出现了有难度的步骤,即标量场如何对矢量场求偏导呢?其实结合“梯度”的定义来看:
设有一个标量场 ϕ = ϕ ( x , y , z ) \phi=\phi(x,y,z) ϕ=ϕ(x,y,z),一个矢量线元 d l ⃗ d\vec{l} dl ,则定义 ϕ \phi ϕ 的梯度为:

g r a d ϕ = ∇ ϕ = d ϕ d l ⃗ = ∂ ϕ ∂ x x ^ + ∂ ϕ ∂ y y ^ + ∂ ϕ ∂ z z ^ grad\phi=\nabla{\phi}=\frac{d\phi}{d\vec{l}}=\frac{\partial{\phi}}{\partial{x}}\hat{x} + \frac{\partial{\phi}}{\partial{y}}\hat{y} + \frac{\partial{\phi}}{\partial{z}}\hat{z} gradϕ=ϕ=dl dϕ=xϕx^+yϕy^+zϕz^

梯度是一个标量场对矢量求导,从而不难得到“有效场等于能量密度对单位磁化强度的梯度”这个结论,这句话也经常出现在许多毕业论文第二章的开头,此时我才明白其中的含义。
于是借助梯度的概念将有效场的式子展开:

H e f f → = 1 − u 0 M s ∇ m ⃗ E a n y = 1 − u 0 M s ( ∂ E a n y ∂ m x x ^ + ∂ E a n y ∂ m y y ^ + ∂ E a n y ∂ m z z ^ ) \overrightarrow{H_{eff}}=\frac{1}{{-u_{0}}{M_s}}\nabla_{\vec{m}}{E_{any}}=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E_{any}}}{\partial{m_x}}\hat{x} + \frac{\partial{E_{any}}}{\partial{m_y}}\hat{y} + \frac{\partial{E_{any}}}{\partial{m_z}}\hat{z}) Heff =u0Ms1m Eany=u0Ms1(mxEanyx^+myEanyy^+mzEanyz^)


一、塞曼能的有效场

已知塞曼能的能量密度公式:

E z e e m a n = − u 0 M s ( m ⃗ ⋅ H ⃗ ) E_{zeeman}={-u_{0}}{M_s}(\vec{m} \cdot \vec{H}) Ezeeman=u0Ms(m H )

其中: H ⃗ = H ( r ⃗ ) → \vec{H}=\overrightarrow{H(\vec{r})} H =H(r ) 为外加磁场(矢量场),单位 A/m。那么可以得到塞曼能的有效场: H z e e m a n → \overrightarrow{H_{zeeman}} Hzeeman

= 1 − u 0 M s δ E z e e m a n δ m → =\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E_{zeeman}}}{\delta{\overrightarrow{m}}} =u0Ms1δm δEzeeman

= 1 − u 0 M s ∂ E z e e m a n ∂ m → = 1 − u 0 M s ( ∂ E z e e m a n ∂ m x x ^ + ∂ E z e e m a n ∂ m y y ^ + ∂ E z e e m a n ∂ m z z ^ ) =\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E_{zeeman}}}{\partial{\overrightarrow{m}}} \newline=\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E_{zeeman}}}{\partial{m_x}}\hat{x} + \frac{\partial{E_{zeeman}}}{\partial{m_y}}\hat{y} + \frac{\partial{E_{zeeman}}}{\partial{m_z}}\hat{z}) =u0Ms1m Ezeeman=u0Ms1(mxEzeemanx^+myEzeemany^+mzEzeemanz^)

= 1 − u 0 M s [ ∂ ∂ m x ( − u 0 M s ( m ⃗ ⋅ H ⃗ ) ) x ^ + ∂ ∂ m y ( − u 0 M s ( m ⃗ ⋅ H ⃗ ) ) y ^ + ∂ ∂ m z ( − u 0 M s ( m ⃗ ⋅ H ⃗ ) ) z ^ ) ] =\frac{1}{{-u_{0}}{M_s}}[\frac{\partial{}}{\partial{m_x}}({-u_{0}}{M_s}(\vec{m} \cdot \vec{H})) \hat{x} + \frac{\partial{}}{\partial{m_y}}({-u_{0}}{M_s}(\vec{m} \cdot \vec{H})) \hat{y} + \frac{\partial{}}{\partial{m_z}}({-u_{0}}{M_s}(\vec{m} \cdot \vec{H})) \hat{z})] =u0Ms1[mx(u0Ms(m H ))x^+my(u0Ms(m H ))y^+mz(u0Ms(m H ))z^)]

= ∂ ∂ m x ( m ⃗ ⋅ H ⃗ ) x ^ + ∂ ∂ m y ( m ⃗ ⋅ H ⃗ ) y ^ + ∂ ∂ m z ( m ⃗ ⋅ H ⃗ ) z ^ =\frac{\partial{}}{\partial{m_x}}(\vec{m} \cdot \vec{H}) \hat{x} + \frac{\partial{}}{\partial{m_y}}(\vec{m} \cdot \vec{H}) \hat{y} + \frac{\partial{}}{\partial{m_z}}(\vec{m} \cdot \vec{H}) \hat{z} =mx(m H )x^+my(m H )y^+mz(m H )z^ ******* (式子 1)

其中 m ⃗ \vec{m} m H ⃗ \vec{H} H 的点乘: m ⃗ ⋅ H ⃗ = m x H x + m y H y + m z H z \vec{m} \cdot \vec{H} = m_xH_x + m_yH_y + m_zH_z m H =mxHx+myHy+mzHz

带回式子(1)的第一项:

∂ ∂ m x ( m ⃗ ⋅ H ⃗ ) x ^ = ∂ ∂ m x ( m x H x + m y H y + m z H z ) x ^ = H x x ^ \frac{\partial{}}{\partial{m_x}}(\vec{m} \cdot \vec{H}) \hat{x} \newline=\frac{\partial{}}{\partial{m_x}}(m_xH_x + m_yH_y + m_zH_z) \hat{x} \newline=H_x \hat{x} mx(m H )x^=mx(mxHx+myHy+mzHz)x^=Hxx^

同理,式子(1)的第二项:

∂ ∂ m y ( m ⃗ ⋅ H ⃗ ) y ^ = ∂ ∂ m y ( m x H x + m y H y + m z H z ) y ^ = H y y ^ \frac{\partial{}}{\partial{m_y}}(\vec{m} \cdot \vec{H}) \hat{y} \newline=\frac{\partial{}}{\partial{m_y}}(m_xH_x + m_yH_y + m_zH_z) \hat{y} \newline=H_y \hat{y} my(m H )y^=my(mxHx+myHy+mzHz)y^=Hyy^

同理,式子(1)的第三项:

∂ ∂ m z ( m ⃗ ⋅ H ⃗ ) z ^ = ∂ ∂ m z ( m x H x + m y H y + m z H z ) z ^ = H z z ^ \frac{\partial{}}{\partial{m_z}}(\vec{m} \cdot \vec{H}) \hat{z} \newline=\frac{\partial{}}{\partial{m_z}}(m_xH_x + m_yH_y + m_zH_z) \hat{z} \newline=H_z \hat{z} mz(m H )z^=mz(mxHx+myHy+mzHz)z^=Hzz^

最后合并这三项,式子(1)的结果为:

∂ ∂ m x ( m ⃗ ⋅ H ⃗ ) x ^ + ∂ ∂ m y ( m ⃗ ⋅ H ⃗ ) y ^ + ∂ ∂ m z ( m ⃗ ⋅ H ⃗ ) z ^ \frac{\partial{}}{\partial{m_x}}(\vec{m} \cdot \vec{H}) \hat{x} + \frac{\partial{}}{\partial{m_y}}(\vec{m} \cdot \vec{H}) \hat{y} + \frac{\partial{}}{\partial{m_z}}(\vec{m} \cdot \vec{H}) \hat{z} mx(m H )x^+my(m H )y^+mz(m H )z^

= H x x ^ + H y y ^ + H z z ^ = H ⃗ =H_x \hat{x} + H_y \hat{y} + H_z \hat{z} \newline=\vec{H} =Hxx^+Hyy^+Hzz^=H

这个推导结果表示塞曼能的有效场: H z e e m a n → \overrightarrow{H_{zeeman}} Hzeeman 就等于外加磁场 H ⃗ \vec{H} H

而且由塞曼能的能量密度表达式可知,若已知任意微磁能量的有效场 H e f f a n y → \overrightarrow{H^{any}_{eff}} Heffany 的情况下,那么它对应的能量密度表达式即为:

E a n y = − u 0 M s ( m ⃗ ⋅ H e f f a n y → ) E_{any}={-u_{0}}{M_s}(\vec{m} \cdot \overrightarrow{H^{any}_{eff}}) Eany=u0Ms(m Heffany )

二、交换能的有效场

在这里插入图片描述
在这里插入图片描述

= A ∂ ∂ m z [ ( ∂ m z ∂ x ) 2 + ( ∂ m z ∂ y ) 2 + ( ∂ m z ∂ z ) 2 ] = 2 A ∇ 2 m z =A \frac{\partial{}}{\partial{m_z}} [(\frac{\partial{m_{z}}}{\partial{x}})^2 + (\frac{\partial{m_{z}}}{\partial{y}})^2+ (\frac{\partial{m_{z}}}{\partial{z}})^2] \newline=2A \nabla^2{m_z} =Amz[(xmz)2+(ymz)2+(zmz)2]=2A2mz

将以上三项带回式子(1)合并得到交换能的有效场: H e x → \overrightarrow{H_{ex}} Hex

= 1 − u 0 M s [ ∂ ∂ m x ( A [ ( ∇ m x ) 2 + ( ∇ m y ) 2 + ( ∇ m z ) 2 ] ) x ^ + ∂ ∂ m y ( A [ ( ∇ m x ) 2 + ( ∇ m y ) 2 + ( ∇ m z ) 2 ] ) y ^ + ∂ ∂ m x ( A [ ( ∇ m z ) 2 + ( ∇ m y ) 2 + ( ∇ m z ) 2 ] ) z ^ ] =\frac{1}{{-u_{0}}{M_s}}[\frac{\partial{}}{\partial{m_x}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])\hat{x} + \frac{\partial{}}{\partial{m_y}}(A[(\nabla{m_x})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])\hat{y} + \frac{\partial{}}{\partial{m_x}}(A[(\nabla{m_z})^2 + (\nabla{m_y})^2 + (\nabla{m_z})^2])\hat{z}] =u0Ms1[mx(A[(mx)2+(my)2+(mz)2])x^+my(A[(mx)2+(my)2+(mz)2])y^+mx(A[(mz)2+(my)2+(mz)2])z^]

= 2 A − u 0 M s ( ∇ 2 m x x ^ + ∇ 2 m y y ^ + ∇ 2 m z z ^ ) =\frac{2A}{{-u_{0}}{M_s}} ( \nabla^2{m_x}\hat{x} + \nabla^2{m_y}\hat{y} + \nabla^2{m_z}\hat{z}) =u0Ms2A(2mxx^+2myy^+2mzz^)

= 2 A − u 0 M s ∇ 2 m ⃗ =\frac{2A}{{-u_{0}}{M_s}} \nabla^2{\vec{m}} =u0Ms2A2m

三、界面DMI能的有效场

在这里插入图片描述
= D [ 0 − 0 + ∂ m z ∂ y − m z ∂ ∂ y ] =D[0 - 0 +\frac{\partial{m_z}}{\partial{y}}-m_z \frac{\partial{}}{\partial{y}}] =D[00+ymzmzy]

= D [ ∂ m z ∂ y − m z ∂ ∂ y ] =D[\frac{\partial{m_z}}{\partial{y}}-m_z \frac{\partial{}}{\partial{y}}] =D[ymzmzy]

其中式子(1)的第三项: ∂ ∂ m z ( D ( m x ∂ m z ∂ x − m z ∂ m x ∂ x + m y ∂ m z ∂ y − m z ∂ m y ∂ y ) ) \frac{\partial{}}{\partial{m_z}}(D(m_x \frac{\partial{m_z}}{\partial{x}} - m_z \frac{\partial{m_x}}{\partial{x}} + m_y \frac{\partial{m_z}}{\partial{y}} - m_z \frac{\partial{m_y}}{\partial{y}})) mz(D(mxxmzmzxmx+myymzmzymy))

= D [ ∂ ∂ m z ( m x ∂ m z ∂ x ) − ∂ ∂ m z ( m z ∂ m x ∂ x ) + ∂ ∂ m z ( m y ∂ m z ∂ y ) − ∂ ∂ m z ( m z ∂ m y ∂ y ) =D[\frac{\partial{}}{\partial{m_z}}(m_x \frac{\partial{m_z}}{\partial{x}} ) -\frac{\partial{}}{\partial{m_z}}(m_z \frac{\partial{m_x}}{\partial{x}}) +\frac{\partial{}}{\partial{m_z}}(m_y \frac{\partial{m_z}}{\partial{y}}) -\frac{\partial{}}{\partial{m_z}}(m_z \frac{\partial{m_y}}{\partial{y}}) =D[mz(mxxmz)mz(mzxmx)+mz(myymz)mz(mzymy)

= D [ m x ∂ ∂ x − ∂ m x ∂ x + m y ∂ ∂ y − ∂ m y ∂ y ] =D[m_x\frac{\partial{}}{\partial{x}}-\frac{\partial{m_x}}{\partial{x}}+m_y\frac{\partial{}}{\partial{y}}-\frac{\partial{m_y}}{\partial{y}}] =D[mxxxmx+myyymy]

将以上三项带回式子(1)合并得到界面DMI能的有效场: H D M I i n t e r → \overrightarrow{H^{inter}_{DMI}} HDMIinter

= 1 − u 0 M s [ D [ ∂ m z ∂ x − m z ∂ ∂ x ] x ^ + D [ ∂ m z ∂ y − m z ∂ ∂ y ] y ^ + D [ m x ∂ ∂ x − ∂ m x ∂ x + m y ∂ ∂ y − ∂ m y ∂ y ] z ^ ] =\frac{1}{{-u_{0}}{M_s}}[D[\frac{\partial{m_z}}{\partial{x}} -m_z \frac{\partial{}}{\partial{x}}]\hat{x}+D[\frac{\partial{m_z}}{\partial{y}} -m_z \frac{\partial{}}{\partial{y}}]\hat{y}+D[m_x\frac{\partial{}}{\partial{x}} -\frac{\partial{m_x}}{\partial{x}}+m_y\frac{\partial{}}{\partial{y}} -\frac{\partial{m_y}}{\partial{y}}]\hat{z}] =u0Ms1[D[xmzmzx]x^+D[ymzmzy]y^+D[mxxxmx+myyymy]z^]

= D − u 0 M s [ ( ∂ m z ∂ x x ^ − m z ∂ x ^ ∂ x ) + ( ∂ m z ∂ y y ^ − m z ∂ y ^ ∂ y ) + ( m x ∂ z ^ ∂ x − ∂ m x ∂ x z ^ + m y ∂ z ^ ∂ y − ∂ m y ∂ y z ^ ) ] =\frac{D}{{-u_{0}}{M_s}}[(\frac{\partial{m_z}}{\partial{x}}\hat{x} -m_z \frac{\partial{\hat{x}}}{\partial{x}}) +(\frac{\partial{m_z}}{\partial{y}}\hat{y} -m_z \frac{\partial{\hat{y}}}{\partial{y}}) +(m_x\frac{\partial{\hat{z}}}{\partial{x}} -\frac{\partial{m_x}}{\partial{x}}\hat{z} +m_y\frac{\partial{\hat{z}}}{\partial{y}} -\frac{\partial{m_y}}{\partial{y}}\hat{z})] =u0MsD[(xmzx^mzxx^)+(ymzy^mzyy^)+(mxxz^xmxz^+myyz^ymyz^)]

= D − u 0 M s [ ( ∂ m z ∂ x x ^ − m z ⋅ 0 ) + ( ∂ m z ∂ y y ^ − m z ⋅ 0 ) + ( m x ⋅ 0 − ∂ m x ∂ x z ^ + m y ⋅ 0 − ∂ m y ∂ y z ^ ) ] =\frac{D}{{-u_{0}}{M_s}} [(\frac{\partial{m_z}}{\partial{x}}\hat{x} -m_z \cdot 0) +(\frac{\partial{m_z}}{\partial{y}}\hat{y} -m_z \cdot 0) +(m_x \cdot 0 -\frac{\partial{m_x}}{\partial{x}}\hat{z} +m_y \cdot 0 -\frac{\partial{m_y}}{\partial{y}}\hat{z})] =u0MsD[(xmzx^mz0)+(ymzy^mz0)+(mx0xmxz^+my0ymyz^)] ********( x ^ , y ^ , z ^ \hat{x},\hat{y},\hat{z} x^y^z^ 都是(方向)常矢量,它们的偏导数为0)

= D − u 0 M s ( ∂ m z ∂ x x ^ + ∂ m z ∂ y y ^ − ∂ m x ∂ x z ^ − ∂ m y ∂ y z ^ ) =\frac{D}{{-u_{0}}{M_s}} (\frac{\partial{m_z}}{\partial{x}}\hat{x} +\frac{\partial{m_z}}{\partial{y}}\hat{y} -\frac{\partial{m_x}}{\partial{x}}\hat{z} -\frac{\partial{m_y}}{\partial{y}}\hat{z}) =u0MsD(xmzx^+ymzy^xmxz^ymyz^)

= D u 0 M s [ ( ∇ ⋅ m ⃗ ) z ^ − ∇ m z ] =\frac{D}{{u_{0}}{M_s}}[(\nabla \cdot \vec{m})\hat{z} - \nabla{m_z}] =u0MsD[(m )z^mz]

四、体DMI能的有效场

已知体DMI能的能量密度公式:

E D M I b u l k = D [ m ⃗ ⋅ ( ∇ × m ⃗ ) ] E^{bulk}_{DMI}=D[\vec{m} \cdot (\nabla \times \vec{m})] EDMIbulk=D[m (×m )]

首先展开 m ⃗ \vec{m} m 的旋度 ∇ × m ⃗ \nabla \times \vec{m} ×m

= ∣ x ^ y ^ z ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z m x m y m z ∣ =\begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial{}}{\partial{x}} & \frac{\partial{}}{\partial{y}} & \frac{\partial{}}{\partial{z}} \\ m_x & m_y & m_z \end{vmatrix} = x^xmxy^ymyz^zmz

= ( ∂ m z ∂ y − ∂ m y ∂ z , ∂ m x ∂ z − ∂ m z ∂ x , ∂ m y ∂ x − ∂ m x ∂ y ) =(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}}, \frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}}, \frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}}) =(ymzzmy,zmxxmz,xmyymx)

带回原式得到:
E D M I b u l k = D [ m ⃗ ⋅ ( ∇ × m ⃗ ) ] = D [ ( m x , m y , m z ) ⋅ ( ∂ m z ∂ y − ∂ m y ∂ z , ∂ m x ∂ z − ∂ m z ∂ x , ∂ m y ∂ x − ∂ m x ∂ y ) ] E^{bulk}_{DMI}=D[\vec{m} \cdot (\nabla \times \vec{m})] =D[(m_x,m_y,m_z) \cdot (\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}}, \frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}}, \frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})] EDMIbulk=D[m (×m )]=D[(mx,my,mz)(ymzzmy,zmxxmz,xmyymx)]

= D [ m x ( ∂ m z ∂ y − ∂ m y ∂ z ) + m y ( ∂ m x ∂ z − ∂ m z ∂ x ) + m z ( ∂ m y ∂ x − ∂ m x ∂ y ) ] =D[m_x(\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}}) +m_y(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}}) +m_z(\frac{\partial{m_y}}{\partial{x}} - \frac{\partial{m_x}}{\partial{y}})] =D[mx(ymzzmy)+my(zmxxmz)+mz(xmyymx)]
在这里插入图片描述
= D − u 0 M s ( ( ∂ m z ∂ y x ^ − ∂ m y ∂ z x ^ + m y ∂ x ^ ∂ z − m z ∂ x ^ ∂ y ) + ( − m x ∂ y ^ ∂ z + ∂ m x ∂ z y ^ − ∂ m z ∂ x y ^ + m z ∂ y ^ ∂ x ) + ( m x ∂ z ^ ∂ y − m y ∂ z ^ ∂ x + ∂ m y ∂ x z ^ − ∂ m x ∂ y z ^ ) ) =\frac{D}{{-u_{0}}{M_s}}\Bigg( (\frac{\partial{m_z}}{\partial{y}}\hat{x} - \frac{\partial{m_y}}{\partial{z}}\hat{x}+m_y\frac{\partial{\hat{x}}}{\partial{z}} - m_z \frac{\partial{\hat{x}}}{\partial{y}}) +(-m_x \frac{\partial{\hat{y}}}{\partial{z}} + \frac{\partial{m_x}}{\partial{z}}\hat{y} - \frac{\partial{m_z}}{\partial{x}}\hat{y} + m_z \frac{\partial{\hat{y}}}{\partial{x}}) +(m_x\frac{\partial{\hat{z}}}{\partial{y}} - m_y\frac{\partial{\hat{z}}}{\partial{x}}+\frac{\partial{m_y}}{\partial{x}}\hat{z} - \frac{\partial{m_x}}{\partial{y}}\hat{z})\Bigg) =u0MsD((ymzx^zmyx^+myzx^mzyx^)+(mxzy^+zmxy^xmzy^+mzxy^)+(mxyz^myxz^+xmyz^ymxz^)) **********( x ^ , y ^ , z ^ \hat{x},\hat{y},\hat{z} x^y^z^ 都是(方向)常矢量,它们的偏导数为0)

= D − u 0 M s ( ( ∂ m z ∂ y x ^ − ∂ m y ∂ z x ^ + 0 − 0 ) + ( − 0 + ∂ m x ∂ z y ^ − ∂ m z ∂ x y ^ + 0 ) + ( 0 − 0 + ∂ m y ∂ x z ^ − ∂ m x ∂ y z ^ ) ) =\frac{D}{{-u_{0}}{M_s}}\Bigg( (\frac{\partial{m_z}}{\partial{y}}\hat{x} - \frac{\partial{m_y}}{\partial{z}}\hat{x}+ 0 - 0) +(- 0+ \frac{\partial{m_x}}{\partial{z}}\hat{y} - \frac{\partial{m_z}}{\partial{x}}\hat{y} + 0) +(0 - 0+\frac{\partial{m_y}}{\partial{x}}\hat{z} - \frac{\partial{m_x}}{\partial{y}}\hat{z})\Bigg) =u0MsD((ymzx^zmyx^+00)+(0+zmxy^xmzy^+0)+(00+xmyz^ymxz^))

= D − u 0 M s [ ( ∂ m z ∂ y − ∂ m y ∂ z ) x ^ + ( ∂ m x ∂ z − ∂ m z ∂ x ) y ^ + ( ∂ m y ∂ x z ^ − ∂ m x ∂ y ) z ^ ] =\frac{D}{{-u_{0}}{M_s}}[ (\frac{\partial{m_z}}{\partial{y}} - \frac{\partial{m_y}}{\partial{z}})\hat{x} +(\frac{\partial{m_x}}{\partial{z}} - \frac{\partial{m_z}}{\partial{x}})\hat{y} +(\frac{\partial{m_y}}{\partial{x}}\hat{z} - \frac{\partial{m_x}}{\partial{y}})\hat{z}] =u0MsD[(ymzzmy)x^+(zmxxmz)y^+(xmyz^ymx)z^]

= D − u 0 M s ( ∇ × m ⃗ ) =\frac{D}{{-u_{0}}{M_s}}(\nabla \times \vec{m}) =u0MsD(×m )

五、磁晶单轴各向异性能的有效场

已知磁晶单轴各向异性能的能量密度公式:

E u n i a x i a l = − K u ( m ⃗ ⋅ u ⃗ ) 2 或 E u n i a x i a l = − K 1 ( m ⃗ ⋅ u ⃗ ) 2 − K 2 ( m ⃗ ⋅ u ⃗ ) 4 (高阶形式) E_{uniaxial}=-K_u (\vec{m} \cdot \vec{u})^2 或 E_{uniaxial}=-K_1 (\vec{m} \cdot \vec{u})^2 -K_2 (\vec{m} \cdot \vec{u})^4 (高阶形式) Euniaxial=Ku(m u )2Euniaxial=K1(m u )2K2(m u )4(高阶形式)

其中 u ⃗ \vec{u} u 是磁晶易轴方向(单位矢量), K u K_u Ku 是磁晶单轴各向异性常数,单位 J / m 3 J/m^3 J/m3。那么可以得到磁晶单轴各向异性能的有效场: H u n i a x i a l → \overrightarrow{H_{uniaxial}} Huniaxial

= 1 − u 0 M s δ E u n i a x i a l δ m → =\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E_{uniaxial}}}{\delta{\overrightarrow{m}}} =u0Ms1δm δEuniaxial

= 1 − u 0 M s ∂ E u n i a x i a l ∂ m → =\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E_{uniaxial}}}{\partial{\overrightarrow{m}}} =u0Ms1m Euniaxial

= 1 − u 0 M s ( ∂ E u n i a x i a l ∂ m x x ^ + ∂ E u n i a x i a l ∂ m y y ^ + ∂ E u n i a x i a l ∂ m z z ^ ) =\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E_{uniaxial}}}{\partial{m_x}}\hat{x} + \frac{\partial{E_{uniaxial}}}{\partial{m_y}}\hat{y} + \frac{\partial{E_{uniaxial}}}{\partial{m_z}}\hat{z}) =u0Ms1(mxEuniaxialx^+myEuniaxialy^+mzEuniaxialz^)

此处和推导塞曼能的有效场的步骤相同,将 ( m ⃗ ⋅ u ⃗ ) (\vec{m} \cdot \vec{u}) (m u ) 展开为 m x u x + m y u y + m z u z m_x u_x+m_y u_y+m_z u_z mxux+myuy+mzuz 方便我们求导,带回上式:

= 1 − u 0 M s ( ∂ ∂ m x [ − K u ( m x u x + m y u y + m z u z ) 2 ] x ^ + ∂ ∂ m y [ − K u ( m x u x + m y u y + m z u z ) 2 ] y ^ + ∂ ∂ m z [ − K u ( m x u x + m y u y + m z u z ) 2 ] z ^ ) =\frac{1}{{-u_{0}}{M_s}}\Bigg(\frac{\partial{}}{\partial{m_x}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2]\hat{x} +\frac{\partial{}}{\partial{m_y}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2]\hat{y} +\frac{\partial{}}{\partial{m_z}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2]\hat{z}\Bigg) =u0Ms1(mx[Ku(mxux+myuy+mzuz)2]x^+my[Ku(mxux+myuy+mzuz)2]y^+mz[Ku(mxux+myuy+mzuz)2]z^) ******* (式子 1)

其中式子(1)的第一项: ∂ ∂ m x [ − K u ( m x u x + m y u y + m z u z ) 2 ] \frac{\partial{}}{\partial{m_x}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2] mx[Ku(mxux+myuy+mzuz)2]

= − 2 K u [ ( m x u x + m y u y + m z u z ) ] [ u x + 0 + 0 ] =-2K_u[(m_x u_x+m_y u_y+m_z u_z)][u_x + 0 + 0] =2Ku[(mxux+myuy+mzuz)][ux+0+0]

= − 2 K u ( m ⃗ ⋅ u ⃗ ) u x =-2K_u(\vec{m} \cdot \vec{u}) u_x =2Ku(m u )ux

其中式子(1)的第二项: ∂ ∂ m y [ − K u ( m x u x + m y u y + m z u z ) 2 ] \frac{\partial{}}{\partial{m_y}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2] my[Ku(mxux+myuy+mzuz)2]

= − 2 K u [ ( m x u x + m y u y + m z u z ) ] [ 0 + u y + 0 ] =-2K_u[(m_x u_x+m_y u_y+m_z u_z)][0 + u_y + 0] =2Ku[(mxux+myuy+mzuz)][0+uy+0]

= − 2 K u ( m ⃗ ⋅ u ⃗ ) u y =-2K_u(\vec{m} \cdot \vec{u}) u_y =2Ku(m u )uy

其中式子(1)的第三项: ∂ ∂ m z [ − K u ( m x u x + m y u y + m z u z ) 2 ] \frac{\partial{}}{\partial{m_z}}[-K_u(m_x u_x+m_y u_y+m_z u_z)^2] mz[Ku(mxux+myuy+mzuz)2]

= − 2 K u [ ( m x u x + m y u y + m z u z ) ] [ 0 + 0 + u z ] =-2K_u[(m_x u_x+m_y u_y+m_z u_z)][0 + 0 + u_z] =2Ku[(mxux+myuy+mzuz)][0+0+uz]

= − 2 K u ( m ⃗ ⋅ u ⃗ ) u z =-2K_u(\vec{m} \cdot \vec{u}) u_z =2Ku(m u )uz

将以上三项带回式子(1)合并得到磁晶单轴各向异性能的有效场: H u n i a x i a l → \overrightarrow{H_{uniaxial}} Huniaxial

= 1 − u 0 M s ( − 2 K u ( m ⃗ ⋅ u ⃗ ) u x x ^ − 2 K u ( m ⃗ ⋅ u ⃗ ) u y y ^ − 2 K u ( m ⃗ ⋅ u ⃗ ) u y z ^ ) =\frac{1}{{-u_{0}}{M_s}}\Bigg(-2K_u(\vec{m} \cdot \vec{u}) u_x \hat{x} -2K_u(\vec{m} \cdot \vec{u}) u_y \hat{y}-2K_u(\vec{m} \cdot \vec{u}) u_y \hat{z}\Bigg) =u0Ms1(2Ku(m u )uxx^2Ku(m u )uyy^2Ku(m u )uyz^)

= − 2 K u − u 0 M s ( m ⃗ ⋅ u ⃗ ) ( u x x ^ + u y y ^ − u y z ^ ) =\frac{-2K_u}{{-u_{0}}{M_s}}(\vec{m} \cdot \vec{u}) (u_x \hat{x} +u_y \hat{y}-u_y \hat{z}) =u0Ms2Ku(m u )(uxx^+uyy^uyz^)

= 2 K u u 0 M s ( m ⃗ ⋅ u ⃗ ) u ⃗ =\frac{2K_u}{{u_{0}}{M_s}}(\vec{m} \cdot \vec{u}) \vec{u} =u0Ms2Ku(m u )u

六、磁晶立方各向异性能的有效场

已知磁晶立方各向异性能的能量密度公式:

E c u b i c = − K c [ ( m ⃗ ⋅ u 1 ⃗ ) 2 ( m ⃗ ⋅ u 2 ⃗ ) 2 + ( m ⃗ ⋅ u 2 ⃗ ) 2 ( m ⃗ ⋅ u 3 ⃗ ) 2 + ( m ⃗ ⋅ u 3 ⃗ ) 2 ( m ⃗ ⋅ u 1 ⃗ ) 2 ] E_{cubic}=-K_c [(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2})^2 +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3})^2 +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1})^2] Ecubic=Kc[(m u1 )2(m u2 )2+(m u2 )2(m u3 )2+(m u3 )2(m u1 )2]

其中 u 1 ⃗ , u 2 ⃗ , u 3 ⃗ \vec{u_1},\vec{u_2},\vec{u_3} u1 u2 u3 是磁晶易轴方向(单位矢量),而且 u 3 ⃗ \vec{u_3} u3 是通过 u 1 ⃗ , u 2 ⃗ \vec{u_1},\vec{u_2} u1 u2 的叉乘确定的: u 3 ⃗ = u 1 ⃗ × u 2 ⃗ \vec{u_3} = \vec{u_1} \times \vec{u_2} u3 =u1 ×u2 K c K_c Kc 是磁晶立方各向异性常数,单位 J / m 3 J/m^3 J/m3。那么可以得到磁晶立方各向异性能的有效场: H c u b i c → \overrightarrow{H_{cubic}} Hcubic

= 1 − u 0 M s δ E c u b i c δ m → = 1 − u 0 M s ∂ E c u b i c ∂ m → =\frac{1}{{-u_{0}}{M_s}}\frac{\delta{E_{cubic}}}{\delta{\overrightarrow{m}}} \newline=\frac{1}{{-u_{0}}{M_s}}\frac{\partial{E_{cubic}}}{\partial{\overrightarrow{m}}} =u0Ms1δm δEcubic=u0Ms1m Ecubic

= 1 − u 0 M s ( ∂ E c u b i c ∂ m x x ^ + ∂ E c u b i c ∂ m y y ^ + ∂ E c u b i c ∂ m z z ^ ) =\frac{1}{{-u_{0}}{M_s}}(\frac{\partial{E_{cubic}}}{\partial{m_x}}\hat{x} + \frac{\partial{E_{cubic}}}{\partial{m_y}}\hat{y} + \frac{\partial{E_{cubic}}}{\partial{m_z}}\hat{z}) =u0Ms1(mxEcubicx^+myEcubicy^+mzEcubicz^)

= 1 − u 0 M s ( ∂ ∂ m x [ − K c [ ( m ⃗ ⋅ u 1 ⃗ ) 2 ( m ⃗ ⋅ u 2 ⃗ ) 2 + ( m ⃗ ⋅ u 2 ⃗ ) 2 ( m ⃗ ⋅ u 3 ⃗ ) 2 + ( m ⃗ ⋅ u 3 ⃗ ) 2 ( m ⃗ ⋅ u 1 ⃗ ) 2 ] ] x ^ =\frac{1}{{-u_{0}}{M_s}}\Bigg( \frac{\partial{}}{\partial{m_x}}[-K_c [(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2})^2 +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3})^2 +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1})^2]]\hat{x} =u0Ms1(mx[Kc[(m u1 )2(m u2 )2+(m u2 )2(m u3 )2+(m u3 )2(m u1 )2]]x^

+ ∂ ∂ m y [ − K c [ ( m ⃗ ⋅ u 1 ⃗ ) 2 ( m ⃗ ⋅ u 2 ⃗ ) 2 + ( m ⃗ ⋅ u 2 ⃗ ) 2 ( m ⃗ ⋅ u 3 ⃗ ) 2 + ( m ⃗ ⋅ u 3 ⃗ ) 2 ( m ⃗ ⋅ u 1 ⃗ ) 2 ] ] y ^ +\frac{\partial{}}{\partial{m_y}}[-K_c [(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2})^2 +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3})^2 +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1})^2]]\hat{y} +my[Kc[(m u1 )2(m u2 )2+(m u2 )2(m u3 )2+(m u3 )2(m u1 )2]]y^

+ ∂ ∂ m z [ − K c [ ( m ⃗ ⋅ u 1 ⃗ ) 2 ( m ⃗ ⋅ u 2 ⃗ ) 2 + ( m ⃗ ⋅ u 2 ⃗ ) 2 ( m ⃗ ⋅ u 3 ⃗ ) 2 + ( m ⃗ ⋅ u 3 ⃗ ) 2 ( m ⃗ ⋅ u 1 ⃗ ) 2 ] ] z ^ ) +\frac{\partial{}}{\partial{m_z}}[-K_c [(\vec{m} \cdot \vec{u_1})^2 (\vec{m} \cdot \vec{u_2})^2 +(\vec{m} \cdot \vec{u_2})^2 (\vec{m} \cdot \vec{u_3})^2 +(\vec{m} \cdot \vec{u_3})^2 (\vec{m} \cdot \vec{u_1})^2]]\hat{z}\Bigg) +mz[Kc[(m u1 )2(m u2 )2+(m u2 )2(m u3 )2+(m u3 )2(m u1 )2]]z^)

= 1 − u 0 M s ( ∂ ∂ m x [ − K c [ [ ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) ] 2 + [ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) ] 2 + [ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) ] 2 ] ] x ^ =\frac{1}{{-u_{0}}{M_s}}\Bigg( \frac{\partial{}}{\partial{m_x}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2 +[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2 +[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{x} =u0Ms1(mx[Kc[[(m u1 )(m u2 )]2+[(m u2 )(m u3 )]2+[(m u3 )(m u1 )]2]]x^

+ ∂ ∂ m y [ − K c [ [ ( m ⃗ ⋅ u 1 ⃗ ) ( m ⃗ ⋅ u 2 ⃗ ) ] 2 + [ ( m ⃗ ⋅ u 2 ⃗ ) ( m ⃗ ⋅ u 3 ⃗ ) ] 2 + [ ( m ⃗ ⋅ u 3 ⃗ ) ( m ⃗ ⋅ u 1 ⃗ ) ] 2 ] ] y ^ +\frac{\partial{}}{\partial{m_y}}[-K_c [[(\vec{m} \cdot \vec{u_1}) (\vec{m} \cdot \vec{u_2})]^2 +[(\vec{m} \cdot \vec{u_2}) (\vec{m} \cdot \vec{u_3})]^2 +[(\vec{m} \cdot \vec{u_3}) (\vec{m} \cdot \vec{u_1})]^2]]\hat{y} +my[Kc[[(m u1 )(m u2 )]2+[(m u2 )(m u3 )]2+[(m u3 )(m u1 )]2]]y^
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


总结

本文总结了微磁学中通过几个基本的能量密度公式推导出其有效场,内容核心就是求偏导,各种各样的偏导。至于微磁学中的其它公式推导,暂时还没学到皮毛,只有等以后再说了。

  • 14
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 16
    评论
半导体自旋电子学是指利用半导体材料中电子的自旋自由度进行信息处理和存储的研究领域。自旋是电子的一种内禀属性,类似于旋转角动量,可以分为上旋和下旋两种状态。与传统的电子信息处理系统依赖于电子的电荷进行信息传递和存储不同,自旋电子学利用电子的自旋来实现信息的读写与处理。 半导体材料是自旋电子学的重要载体之一,因为它具有良好的电子运输性能和光电特性。通过在半导体材料中引入磁性材料或特殊的晶格结构,可以控制电子的自旋状态,实现自旋的操纵和传输。 半导体自旋电子学在信息存储方面具有潜在的优势。相比传统的电荷存储器,自旋存储器具有更高的信息存储密度和更低的功耗。自旋存储器可以通过改变电子的自旋方向来表示不同的二进制状态,实现信息的存储和读取。此外,自旋信息可以在半导体材料中传输,可以实现自旋电子的远距离传输和相干操控。 半导体自旋电子学在信息处理方面也有广阔的应用前景。利用自旋电子的非线性相互作用,可以实现自旋逻辑门等基本逻辑操作,开拓了新的信息处理方式。自旋电子学还可以与光学、超导等领域相结合,实现多功能的信息处理和量子计算。此外,半导体自旋电子学还可以应用于磁性存储器、磁传感器、自旋激元学等领域,具有广泛的应用前景。 总而言之,半导体自旋电子学是一门综合性的学科,涉及物理学、材料科学、电子工程等多个领域。它利用半导体材料中电子的自旋自由度进行信息处理和存储,具有很高的科学研究和应用价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

搬砖工人_0803号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值