【笔记】《信号与系统》(奥本海姆)第二章
前言
我对于第二章仅有的记忆就是卷积了。卷积真是一个复杂又简单的概念,因为在理解上其实并不困难,但是通过自己的语言描述出来再讲给别人听,而且要让他听懂,这就是一件比较难的事情了。原因在于在现实世界中,很少有具体的东西是与卷积直接相关的,也就是说想要通过举出直观且简单的例子来阐述卷积的概念是比较困难的,卷积更像是一种只存在于数学中的抽象概念。
当然,本章的标题是线性时不变系统,肯定是要研究线性时不变系统的相关性质,例如第一章中讲到的因果性,稳定性等,卷积只是其中的一个概念。
本章还讲到了利用微分方程与差分方程描述因果的线性时不变系统以及奇异函数。我并不是很理解奇异函数在信号与系统中的作用,只清楚奇异值在高数中代表函数不连续或不可导的点。
框架
正文
- 输入信号的脉冲/冲激表示
在上一章有记录到,单位脉冲/冲激具有筛选性质,即除了某一点的值为输入信号外,其余的点均为0。以下图信号为例,连续信号同理
该信号可分解为
x [ n ] = ⋯ + x [ − 4 ] δ [ n + 4 ] + x [ − 3 ] δ [ n + 3 ] + x [ − 2 ] δ [ n + 2 ] + x [ − 1 ] δ [ n + 1 ] + x [ 0 ] δ [ n ] + x [ 1 ] δ [ n − 1 ] + x [ 2 ] δ [ n − 2 ] + x [ 3 ] δ [ n − 3 ] + x [ 4 ] δ [ n − 4 ] + ⋯ \begin{aligned} x[n] =&\cdots+ x[-4]\delta[n+4]+x[-3]\delta[n+3]+x[-2]\delta[n+2]+ \\&x[-1]\delta[n+1]+x[0]\delta[n]+x[1]\delta[n-1]+x[2]\delta[n-2]+ \\&x[3]\delta[n-3]+x[4]\delta[n-4]+\cdots \end{aligned} x[n]=⋯+x[−4]δ[n+4]+x[−3]δ[n+3]+x[−2]δ[n+2]+x[−1]δ[n+1]+x[0]δ[n]+x[1]δ[n−1]+x[2]δ[n−2]+x[3]δ[n−3]+x[4]δ[n−4]+⋯
从上述式子可以看出,关键是要 δ [ n ] \delta[n] δ[n]等于0,这样才能将 x [ n ] x[n] x[n]单独筛选出来。由此可以得出一般情况下的输入信号分解为
x [ n ] = ∑ k = − ∞ ∞ x [ k ] δ [ n − k ] x[n] = \sum_{k = -\infty}^{\infty}x[k]\delta[n-k] x[n]=k=−∞∑∞x[k]δ[n−k]
同理,连续的情况下输入信号分解为
x ( t ) = ∫ − ∞ ∞ x ( t ) δ ( t − τ ) d τ x(t) = \int_{-\infty}^{\infty}x(t)\delta(t-\tau)d\tau x(t)=∫−∞∞x(t)δ(t−τ)dτ
接下来解释为什么需要进行信号分解
如其名,线性时不变系统具有线性和时不变的性质。线性代表系统具有叠加性,时不变性则代表若系统的输入信号为 x [ n − n 0 ] x[n-n_{0}] x[n−n0],则输出信号为 y [ n − n 0 ] y[n-n_{0}] y[n−n0]。
利用这两个性质,就可以单独对每一个点求输出。具体的操作步骤是先对输入信号进行分解,然后对每一个点的输入信号求系统响应,将获得的所有系统响应求和,便是原信号的系统响应。线性保证了输入信号的可分解性和输出信号的可叠加性,时不变性保证了输入信号 x [ n ] x[n] x[n]与输出信号 y [ n ] y[n] y[n]的一一对应。这就是线性时不变系统所具有的性质。
- 单位脉冲/冲激响应
上面已经对线性时不变系统有了基本的描述,现在用更准确语言来描述。
考虑某一线性系统(可能为时变的),假设 h k [ n ] h_{k}[n] hk[n]为该系统对移位单位脉冲 δ [ n − k ] \delta[n-k] δ[n−k]的响应。那么输出 y [ n ] y[n] y[n]的表达式就为
y [ n ] = ∑ k = − ∞ ∞ x [ k ] h k [ n ] y[n] = \sum_{k=-\infty}^{\infty}x[k]h_{k}[n] y[n]=k=−∞∑∞x[k]hk[n]
相当于是加权求和,权重就是 x [ k ] x[k] x[k],即每一个 h k [ n ] h_{k}[n] hk[n]对输出 y [ n ] y[n] y[n]贡献了多少
现在再加强条件,假设系统是时不变的,那么响应 h k [ n ] h_{k}[n] hk[n]就是 h 0 [ n ] h_{0}[n] h0[n]的一个时移,记
h k [ n ] = h 0 [ n − k ] h_{k}[n]=h_{0}[n-k] hk[n]=h