【笔记】《信号与系统》(奥本海姆)第二章

本文是《信号与系统》第二章的学习笔记,重点讲解了卷积的概念及其在线性时不变系统中的应用。通过吃包子的例子,形象地解释了卷积如何表示信号的叠加和时移特性,并介绍了线性时不变系统的性质,包括交换律、分配律、结合律和记忆性。此外,还探讨了因果性、稳定性、单位阶跃响应和差分方程描述。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【笔记】《信号与系统》(奥本海姆)第二章

前言

  我对于第二章仅有的记忆就是卷积了。卷积真是一个复杂又简单的概念,因为在理解上其实并不困难,但是通过自己的语言描述出来再讲给别人听,而且要让他听懂,这就是一件比较难的事情了。原因在于在现实世界中,很少有具体的东西是与卷积直接相关的,也就是说想要通过举出直观且简单的例子来阐述卷积的概念是比较困难的,卷积更像是一种只存在于数学中的抽象概念。
  当然,本章的标题是线性时不变系统,肯定是要研究线性时不变系统的相关性质,例如第一章中讲到的因果性,稳定性等,卷积只是其中的一个概念。
  本章还讲到了利用微分方程与差分方程描述因果的线性时不变系统以及奇异函数。我并不是很理解奇异函数在信号与系统中的作用,只清楚奇异值在高数中代表函数不连续或不可导的点。

框架

在这里插入图片描述

正文

  • 输入信号的脉冲/冲激表示
    在上一章有记录到,单位脉冲/冲激具有筛选性质,即除了某一点的值为输入信号外,其余的点均为0。以下图信号为例,连续信号同理
    在这里插入图片描述
    该信号可分解为
    x [ n ] = ⋯ + x [ − 4 ] δ [ n + 4 ] + x [ − 3 ] δ [ n + 3 ] + x [ − 2 ] δ [ n + 2 ] + x [ − 1 ] δ [ n + 1 ] + x [ 0 ] δ [ n ] + x [ 1 ] δ [ n − 1 ] + x [ 2 ] δ [ n − 2 ] + x [ 3 ] δ [ n − 3 ] + x [ 4 ] δ [ n − 4 ] + ⋯ \begin{aligned} x[n] =&\cdots+ x[-4]\delta[n+4]+x[-3]\delta[n+3]+x[-2]\delta[n+2]+ \\&x[-1]\delta[n+1]+x[0]\delta[n]+x[1]\delta[n-1]+x[2]\delta[n-2]+ \\&x[3]\delta[n-3]+x[4]\delta[n-4]+\cdots \end{aligned} x[n]=+x[4]δ[n+4]+x[3]δ[n+3]+x[2]δ[n+2]+x[1]δ[n+1]+x[0]δ[n]+x[1]δ[n1]+x[2]δ[n2]+x[3]δ[n3]+x[4]δ[n4]+
    从上述式子可以看出,关键是要 δ [ n ] \delta[n] δ[n]等于0,这样才能将 x [ n ] x[n] x[n]单独筛选出来。由此可以得出一般情况下的输入信号分解为
    x [ n ] = ∑ k = − ∞ ∞ x [ k ] δ [ n − k ] x[n] = \sum_{k = -\infty}^{\infty}x[k]\delta[n-k] x[n]=k=x[k]δ[nk]
    同理,连续的情况下输入信号分解为
    x ( t ) = ∫ − ∞ ∞ x ( t ) δ ( t − τ ) d τ x(t) = \int_{-\infty}^{\infty}x(t)\delta(t-\tau)d\tau x(t)=x(t)δ(tτ)dτ
    接下来解释为什么需要进行信号分解
    如其名,线性时不变系统具有线性和时不变的性质。线性代表系统具有叠加性,时不变性则代表若系统的输入信号为 x [ n − n 0 ] x[n-n_{0}] x[nn0],则输出信号为 y [ n − n 0 ] y[n-n_{0}] y[nn0]
    利用这两个性质,就可以单独对每一个点求输出。具体的操作步骤是先对输入信号进行分解,然后对每一个点的输入信号求系统响应,将获得的所有系统响应求和,便是原信号的系统响应。线性保证了输入信号的可分解性和输出信号的可叠加性,时不变性保证了输入信号 x [ n ] x[n] x[n]与输出信号 y [ n ] y[n] y[n]的一一对应。这就是线性时不变系统所具有的性质。
    在这里插入图片描述
  • 单位脉冲/冲激响应
    上面已经对线性时不变系统有了基本的描述,现在用更准确语言来描述。
    考虑某一线性系统(可能为时变的),假设 h k [ n ] h_{k}[n] hk[n]为该系统对移位单位脉冲 δ [ n − k ] \delta[n-k] δ[nk]的响应。那么输出 y [ n ] y[n] y[n]的表达式就为
    y [ n ] = ∑ k = − ∞ ∞ x [ k ] h k [ n ] y[n] = \sum_{k=-\infty}^{\infty}x[k]h_{k}[n] y[n]=k=x[k]hk[n]
    相当于是加权求和,权重就是 x [ k ] x[k] x[k],即每一个 h k [ n ] h_{k}[n] hk[n]对输出 y [ n ] y[n] y[n]贡献了多少
    现在再加强条件,假设系统是时不变的,那么响应 h k [ n ] h_{k}[n] hk[n]就是 h 0 [ n ] h_{0}[n] h0[n]的一个时移,记
    h k [ n ] = h 0 [ n − k ] h_{k}[n]=h_{0}[n-k] hk[n]=h
<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值