LeetCode-95 合理利用返回值

本文主要介绍了如何解决LeetCode中的95题,通过确定根节点值来递归构造值为1到n的二叉搜索树。关键在于理解二叉搜索树的性质,根据根节点的值限制左右子树的取值范围,并使用两重循环遍历所有可能的组合,以生成所有符合条件的树。在编程实现过程中,需要注意返回值的合理利用。
摘要由CSDN通过智能技术生成
一、思路

最开始做这道题的时候,我把题目理解成了值为1到n的二叉搜索树有几颗,而不是这些树分别是什么。但这两个问题的关联度较大,问题的关键在于想到:当我们确定了根节点的值是什么,那么他左右子树的取值范围就已经很明确了。
若根节点的取值是在[left , right]中的一个值k,由二叉搜索树的定义可知,左子树的值在[left , k-1],右子树的值在[k+1 , right]。假设我们已经求出左右子树(注意求出的应该是一组树,而不是一个树),所以我们用两重循环遍历所有左右子树搭配的可能,也就求出根节点值为k、取值范围在[left , right]间的所有树,遍历即可求出值为[left , right]的所有树
这样问题就形成了递归,自然也就解决。

二、注意:

在最开始的时候,我将helper()(代码中的函数)的返回值设置成void,虽然想到根节点确定,左右子树范围确定这一点,但是一直不知道该怎么转换成代码。(当时冒出的想法是,一棵树如果已经完整(有n个节点),那么就将他push_back到结果中,但是没有实现)

三、代码
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    vector<TreeNode*> generateTrees(int n) {
        if (n == 0)
        {
            vector<TreeNode*> ans;
            return ans;
        }
        return helper(1 , n);
    }
    
    vector<TreeNode*> helper(int left , int right)
    {
        vector<TreeNode*> ans;
        if (left > right)
        {
            ans.push_back(NULL);
            return ans;
        }

        for (int i = left ; i <= right ; ++i)
        {
            vector<TreeNode*> leftTrees = helper(left , i-1);
            vector<TreeNode*> rightTrees = helper(i+1 , right);
            
            for (auto leftTree : leftTrees)
            {
                for (auto rightTree : rightTrees)
                {
                    TreeNode* root = new TreeNode(i);
                    root->left = leftTree;
                    root->right = rightTree;
                    ans.push_back(root);
                }
            }
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值